HPLC ANALYSIS OF SALICYLIC DERIVATIVES FROM NATURAL PRODUCTS

ANCA TOIU*, LAURIAN VLASE, ILIOARA ONIGA, DANIELA BENEDEC, MIRCEA TĂMAȘ

University of Medicine and Pharmacy „Iuliu Hatieganu”, Faculty of Pharmacy, 12, Ion Creangă Street, 400023, Cluj-Napoca, Romania, *corresponding author: ancamaria_toiu@yahoo.com

Abstract
Salicylate-containing herbs have been used as analgesic and anti-inflammatory remedies from ancient times. In this work we performed a comparative HPLC study of salicylic derivatives in three natural products: Salicis cortex, Populi gemmae and Ulmariae folium. We have identified and measured by a new, easy and fast HPLC method both salicylic acid and salicin, before and after acid hydrolysis, in ethanolic extracts of vegetal products. Ulmariae folium is the richest source of salicylic acid (0.295-0.487%), while Populi gemmae and Salicis cortex contain higher quantities of salicylic alcohol derivatives (0.351-0.366% and respectively 0.199-0.315% salicin).

Keywords: salicylic acid, salicin, HPLC

Introduction
Salicylates are non-steroidal anti-inflammatory agents derived from salicylic acid: esters of organic acids substituted at the hydroxyl group or esters or salts substituted at the carboxyl group. The main salicylic acid derivatives are acetylsalicylic acid, methylsalicylate, salicylaldehyde and salicyl alcohol. Natural products with salicylic derivatives have widespread uses in traditional therapy as antirheumatic and analgesic remedies. The anti-inflammatory properties are attributed to salicylic acid obtained by hydrolysis of its esters or by oxidation of the salicyl alcohol, formed upon intestinal hydrolysis of salicin [1,5,8].

The flowering tops and leaves of Filipendula ulmaria L. Maxim (meadowsweet, Rosaceae) contain flavonol glycosides, tannins (10-20%),
phenolic compounds (monotropitoside, salicylaldehyde), essential oil [1,3,4,7,8,9]. *Filipendula ulmaria* is a medicinal plant traditionally used for its anti-inflammatory, antirheumatic, analgesic, astringent, antiulcerogenic, antacid and diuretic properties [1,3,5]. Unlike acetylsalicylic acid, the combination of salicylates, tannins and other constituents in meadowsweet acts to protect the inner lining of the stomach and intestines, while providing the anti-inflammatory effect of salicylates [5].

The bark of *Salix alba* L. (willow, *Salicaceae*) is rich in tannins (3-12%), flavonoids, glycosides of phenols and phenolic acids, like: salicin 0.5-1% (salicyl alcohol glucoside) and its esters: salicortin, tremulacin, populin. [1,3,6,16].

The buds of *Populus nigra* (black poplar, *Salicaceae*) contain phenolic glycosides (salicin, populin), essential oil, tannins, and they are used in traditional medicine for their anti-inflammatory, antiseptic, astringent properties [3,10].

Considering the lack of quantitative studies on these compounds, the aim of this work was to perform a comparative HPLC analysis of salicylic acid and salicin from natural products: *Salicis cortex*, *Populi gemmae* and *Ulmariae folium*. We have analysed salicylic derivatives by an original, easy and fast HPLC method before and after acid hydrolysis in ethanolic extracts of vegetal products obtained from indigenous sources.

Materials and methods

We analysed the following natural products: *Salicis cortex*, *Populi gemmae* and *Ulmariae folium*. The leaves of *Filipendula ulmaria* were harvested from Cluj, Romania in May 2006, while the willow bark and the poplar buds were obtained from commercial samples. The analysed solutions were prepared as follows: 2g of powdered vegetal product were extracted with 70% ethanol for 30 min on a water bath at 80°C. After extraction, the mixtures were centrifuged at 4000 rpm. In order to study the presence of salicylic acid and salicin after hydrolysis, we mixed these solutions together with 2 M hydrochloric acid, and the solutions were heated at 80°C for 60 min on a water bath. The mixtures were centrifuged at 4000 rpm. The solutions were diluted with distilled water in a 10 mL volumetric flask and filtered through a 0.45 µm filter before injection [13,14].

HPLC determinations:

Apparatus and chromatographic conditions: We used an Agilent 1100 HPLC Series (Agilent, USA) equipped with a degasser G1322A, HP 1100 Series binary pump, a Zorbax SB-C18 reversed-phase analytical
column 100 mm x 3.0 mm i.d., 3.5 µm particle (Agilent technologies, USA), and we operated at 45°C. The mobile phase was a binary gradient: distilled water with 0.1% (v/v) orthophosphoric acid 85% and acetonitrile. The linear gradient started at 5% acetonitrile for 2 minutes, followed by isocratic elution with 25% acetonitrile over the next 3 minutes. The flow rate was 1 mL/min and the injection volume was 10 µL [2,11,12,14,15].

Detection: The fluorescence detector at 310 nm as excitation wavelength and 450 nm as emission wavelength. Salicylic acid and salicin were identified by the external standard method and by comparing of the retention times (R_T) with the ones of the standards, in the same chromatographic conditions and quantified by the external standard method.

The wavelengths for fluorescence detection were chosen in order to give an optimal sensitivity and selectivity to this method.

Standards of salicylic acid (Sigma, Germany) and salicin (Sigma, Germany) were used in order to perform quantitative determinations in distilled water solutions with concentrations between 68-21960 ng/mL, and respectively 64-20540 ng/mL (Table I). The HPLC chromatogram for standards is presented in Figure 1.

![Figure 1](image.png)

Figure 1
HPLC chromatogram for standards: salicin (R_T=2.2 min) and salicylic acid (R_T=4.8 min)
Table I

The concentrations of salicylic acid (ng/mL) and salicin (ng/mL) for the calibration curves

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>68.625</td>
<td>6.48</td>
<td>64.187</td>
<td>10.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>137.25</td>
<td>12.07</td>
<td>128.375</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>274.5</td>
<td>22.8</td>
<td>256.75</td>
<td>40.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>549</td>
<td>46.21</td>
<td>513.5</td>
<td>81.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1098</td>
<td>85.7</td>
<td>1027</td>
<td>146.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2196</td>
<td>156.5</td>
<td>2054</td>
<td>278.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5490</td>
<td>449.7</td>
<td>5135</td>
<td>721.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10980</td>
<td>918.2</td>
<td>10270</td>
<td>1459.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21960</td>
<td>2040.1</td>
<td>20540</td>
<td>3103.4</td>
<td></td>
</tr>
</tbody>
</table>

The calibration curve of salicylic acid standard was linear between 68.625-21960 ng/mL (Figure 2a), and the calibration curve of salicin standard was linear between 64.187-20540 ng/mL (Figure 2b).

Results and discussion

The results of the quantitative determination of phenolic compounds from the three natural products: *Ulmia folium, Populi gemmae* and *Salis cortex* are shown in table II.
Results of the quantitative determinations of salicin and salicylic acid

<table>
<thead>
<tr>
<th>Natural Product</th>
<th>Salicin (%)</th>
<th>Salicylic acid (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td></td>
<td>hydrolysis</td>
<td>hydrolysis</td>
</tr>
<tr>
<td>Ulmariae folium</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Populi gemmae</td>
<td>0.351</td>
<td>0.366</td>
</tr>
<tr>
<td>Salicis cortex</td>
<td>0.199</td>
<td>0.315</td>
</tr>
</tbody>
</table>

The HPLC chromatograms of the hydrolysed extracts of *Populi gemmae* and *Salicis cortex* are presented in Figure 3.

Figure 3
HPLC chromatograms of the hydrolysed extracts of *Populi gemmae* (a) and *Salicis cortex* (b)
After the acid hydrolysis, the quantity of these compounds increased. We can consider that salicylic acid is present in natural products both free and as esters derivative. The higher concentration of salicin can be explained by the hydrolysis of some glycosidic esters (salicortin, tremulacin, populin) from the natural products and we can suppose that the glycosidic bond was not hydrolysed in the used conditions.

Ulmariae folium contains the highest quantity of salicylic acid and derivatives, while salicin and its derivatives are missing. _Populi gemmae_ contains salicin, salicylic acid and a small quantity of their derivatives. _Salicis cortex_ contains mainly salicin and its derivatives.

Because the identified compounds are very important for their therapeutic activities, the use of _Salicis cortex_, _Populi gemmae_ and _Ulmariae folium_ as raw material, in order to obtain anti-inflammatory drugs, is justified.

Conclusions

A fast and easy HPLC method was used to identify and quantify salicylic derivatives in three natural products: _Salicis cortex_, _Populi gemmae_ and _Ulmariae folium_ obtained from indigenous flora.

Ulmariae folium is the richest source of salicylic acid, while Populi gemmae and Salicis cortex contain higher quantities of salicylic alcohol derivatives, so they can be recommended as anti-inflammatory products.

References

Manuscript received: February 15th 2010