SUBSTITUENT SELECTION FOR DESIGN AND SYNTHESIS OF ANTIMICROBIAL 1,3 OXAZINES: A TOPLISS MODIFIED APPROACH

RAMESH SAWANT*, LOKESH BHANGALE, JYOTI WADEKAR, PANDURANG GAIKWAD

Department of Pharmaceutical Chemistry, Pd. Dr. Vithalrao Vikhe Patil Foundation’s College of Pharmacy, Vilad Ghat, Post- MIDC, Ahmednagar- 414 111, Maharashtra, India
*corresponding author: sawantrl@yahoo.com

Abstract

The purpose of the present work was to select substituents by using Topliss modified approach to synthesize new 1,3 oxazines with antimicrobial effect. In the series of 6-[4-substitutedphenyl]-4-phenyl-6H-1,3-oxazin-2-amines and N-[6-(4-substitutedphenyl)-4-phenyl-6H-1,3-oxazinyl] acetamides, substituents at fourth position of the phenyl ring were selected according to the Topliss modified approach and the initial set of compounds was synthesized. The antimicrobial screening revealed that compounds with methoxy substituent having negative sigma (-0.04) and negative pi (-0.27) values are good antimicrobial agents showing low minimum inhibitory concentration (MIC). The hydroxyl group substituent with more negative sigma (-0.61) and pi (-0.37) values was selected to synthesize final set compounds and were found better antimicrobials than the initial set of compounds. The study revealed that electron donating polar substituents at fourth position of the phenyl ring are required to improve antimicrobial potential in the series of 6-[4-substitutedphenyl]-4-phenyl-6H-1,3-oxazin-2-amines and N-[6-(4-substitutedphenyl)-4-phenyl-6H-1,3-oxazinyl] acetamides.

Keywords: Topliss approach, 1,3-oxazin-2-amine, 1,3-oxazin-2-yl acetamide, antimicrobial activity.

Introduction

Considering that about 40 % of the therapeutic active compounds incorporate an unfused benzene ring, it is essential to search out the optimum substitution on a benzene ring in lead nucleus to maximize the drug potency. The presence of even a single phenyl ring in a drug structure offers many positions for a variety of substituents. All these possible
analogs might not really be worth synthesizing. Hence, a more rational approach needs to be developed which will help select a limited number of substituents having good discrimination between π (π), σ (σ) and steric constant (E_s) values. In order to overcome the problem of synthetic difficulty, Topliss has suggested a useful synthesis of new analogs of an active lead to maximize the chances of synthesizing the most potent compounds in the given series, as early as possible [1, 2].

A large number of substituted 1,3 oxazines have been claimed for several biological activities, such as antimicrobial [3, 4], anticancer [5, 6], analgesic, anti-inflammatory [7] and anti-tuberculosis [8]. The present work aimed to select a suitable substituent at fourth position of the phenyl ring to improve antimicrobial potential in the series of 6-[4-substitutedphenyl]-4-phenyl-6H-1,3-oxazin-2-amine and N-[6-(4-substitutedphenyl)-4-phenyl-6H-1,3-oxazinyl]acetamides using the Topliss modified approach.

Materials and Methods

Melting points of the synthesized compounds were determined in open capillary tubes and are uncorrected. Purity of final compounds was checked by silica gel G plate using benzene, benzene-methanol as developer. The IR spectra were recorded as KBr discs using a JASCO FTIR 4100 spectrometer. 1H NMR spectra were registered on a VARIAN-NMR Mercury 300 spectrometer using tetramethylsilane (TMS) as internal standard and CDCl$_3$ as solvent and are expressed in parts per million (δ, ppm). The structures of the title compounds were established on the basis of elemental analysis and spectral data.

Synthesis of (2E)-3-(4-substitutedphenyl)-1-phenylprop-2-en-1-ones

General procedure [9,10]

A mixture of acetophenone (0.01 mol) and aryl aldehydes (0.01 mol) was stirred in ethanol (30 mL) and an aqueous solution of sodium hydroxide (15 mL) was added. The mixture was kept over night at room temperature and was poured onto crushed ice. The chalcone derivative precipitates out as solid. Then it was filtered, washed with cold water and crystallized from ethanol.

Synthesis of 6-[4-(4-substitutedphenyl]-4-phenyl-6H-1,3-oxazin-2-amine 2a-f

General procedure [11]

A mixture of chalcone (0.02 mol) and urea (0.02 mol) was dissolved in ethanolic sodium hydroxide (10 mL) and stirred for 3 h. To this mixture, it were added poured 400 mL of cold water with continuous stirring for 1 h
and kept over night in the refrigerator. The precipitate obtained was filtered, washed and recrystallized from ethanol.

4. 6-Diphenyl-6H-1,3-oxazin-2-amine 2a
Yield: 65.00 %; m.p.: 242 °C; IR (KBr, cm⁻¹): 3120.37 (1⁰NH₂), 1607.38 (Ar=C=C), 1213.01 (C-N), 1178 (C-O-C); ¹H NMR (300 MHz, CDCl₃) δ: 4.80 (s, 2H, NH₂), 6.093 (d, 1H, CH), 6.29 (d, 1H, CH), 7.22-7.60 (m, 10H, aromatic). Anal. calcd. for C₁₈H₁₄N₂O (mw =250.29): C, 76.78; H, 5.64; N, 14.32 % Found: C, 76.99; H, 5.44; N, 14.20 %.

6-[4-(Dimethylamino) phenyl]-4-phenyl-6H-1,3-oxazin-2-amine 2b
Yield: 65.00 %; m.p.: 90 °C; IR (KBr, cm⁻¹): 3051.8 (1⁰NH₂), 1600 (Ar=C=C), 1236 (C-O-C), 1172.51 (C-N); ¹H NMR (300 MHz, CDCl₃) δ: 2.82 [s, 6H, N(CH₃)₂], 4.80 (s, 2H, NH₂), 6.09 (d, 1H, CH), 6.29 (d, 1H, CH), 6.45-7.60 (m, 9H, aromatic). Anal. calcd. for C₁₈H₁₉N₃O (mw = 293.36): C, 73.69; H, 6.53; N, 14.32 % Found: C, 73.59; H, 6.45; N, 14.20 %.

6-(4-Chlorophenyl)-4-phenyl-6H-1,3-oxazin-2-amine 2c
Yield: 62.00 %; m.p.: 104 °C; IR (KBr, cm⁻¹): 3068.19 (1⁰NH₂), 1602.56 (Ar=C=C), 1218.79 (C-N), 1176 (C-O-C), 1090.55 (Ar-Cl); ¹H NMR (300 MHz, CDCl₃) δ: 4.80 (s, 2H, NH₂), 6.09 (d, 1H, CH), 6.29 (d, 1H, CH), 7.22-7.60 (m, 9H, aromatic). Anal. calcd. for C₁₈H₁₃ClN₂O (mw =284.74): C, 67.49; H, 4.60; N, 9.84 %. Found: C, 67.39; H, 4.63; N, 9.86 %.

6-(4-Nitrophenyl)-4-phenyl-6H-1,3-oxazin-2-amine 2d
Yield: 66.00 %; m.p.: 112 °C; IR (KBr, cm⁻¹): 3095.19 (1⁰NH₂), 1602.56 (Ar=C=C), 1516 (Ar-NO₂), 1218.79 (C-N), 1101 (C-O-C); ¹H NMR (300 MHz, CDCl₃) δ: 7.22-7.85 (m, 9H, aromatic), 4.80 (s, 2H, NH₂), 6.09 (d, 1H, CH), 6.29 (d, 1H, CH). Anal. calcd. for C₁₆H₁₃N₃O₃ (mw =295.29): C, 65.08; H, 4.44; N, 14.23 % Found: C, 65.18; H, 4.30; N, 14.21 %.

6-(4-Methoxyphenyl)-4-phenyl-6H-1,3-oxazin-2-amine 2e
Yield: 78.00 %; m.p.: 78 °C; IR (KBr, cm⁻¹): 3311.18 (1⁰NH₂), 1388.5 (Ar-C-O), 1215.9 (C-N), 1183 (C-O-C), 1159.66 (Ar-C=C); ¹H NMR (300 MHz, CDCl₃) δ: 3.75 (s, 3H, CH₃), 4.80 (s, 2H, NH₂), 6.09 (d, 1H, CH), 6.29 (d, 1H, CH), 6.74-7.60 (m, 9H, aromatic). Anal. calcd. for C₁₇H₁₈N₂O₂ (mw =280.32): C, 72.84; H, 5.75; N, 9.99 %. Found: C, 72.94; H, 5.70; N, 9.81 %.

2-Amino-4-phenyl-6(4-hydroxyphenyl)-6H-1,3-oxazine 2f
Yield: 53.00 %; m.p.: 86 °C; IR (KBr, cm⁻¹): 2927.41 (Ar-OH), 1593.88 (Ar-C=C), 1215.9 (C-N), 1138 (C-O-C); ¹H NMR (300 MHz, CDCl₃) δ: 4.80 (s, 2H, NH₂), 5.23 (s, 1H, OH), 6.09 (d, 1H, CH), 6.29 (d, 1H, CH), 6.74-7.60 (m, 9H, aromatic). Anal. calcd. for C₁₇H₁₈N₂O₂ (mw =280.32): C, 72.84; H, 5.75; N, 9.99 %. Found: C, 72.94; H, 5.70; N, 9.81 %.
6.76-7.60 (m, 9H, aromatic). Anal. calcd. for C\textsubscript{16}H\textsubscript{14}N\textsubscript{2}O\textsubscript{2} (mw = 266.29): C, 72.16; H, 5.30; N, 10.52 %. Found: C, 72.03; H, 5.25; N, 10.54 %.

Synthesis of \(N\)-[6-(4-substitutedphenyl)-4-phenyl-6\(H\)-1,3-oxazinyl] acetamides 3a-f

General procedure

A mixture of 6-[4-substitutedphenyl]-4-phenyl-6\(H\)-1,3-oxazin-2-yl]amines (1 mol), acetic anhydride (1.2 mol) and glacial acetic acid (1.2 mol) was refluxed for 10 min. The hot mixture was poured in excess of cold water under stirring where acetamide precipitated out. It was then filtered and washed with cold water.

\(N\)-(4,6-Diphenyl-6\(H\)-1,3-oxazin-2-yl]acetamide 3a

Yield: 64.00 %; m.p.: 164 \(^0\)C; IR (KBr, cm\(^{-1}\)): 3313.11 (NH), 1661.37 (C=O), 1602.56 (Ar-C=C), 1101 (C-O-C); \(^1\)H NMR (300 MHz, CDCl\(_3\) \(\delta\)): 2.16 (d, 3H, CH\(_3\)), 6.12 (d, 1H, CH), 6.30 (d, 1H, CH), 7.22-7.52 (m, 10H, aromatic), 8.62 (m, 1H, NH). Anal. calcd. for C\textsubscript{18}H\textsubscript{16}N\textsubscript{2}O\textsubscript{2} (mw =292.33): C, 73.95; H, 5.52; N, 9.58 %. Found: C, 73.71; H, 5.38; N, 9.48 %.

\(N\)-[6-[4-(Dimethylamino) phenyl]-4-phenyl-6\(H\)-1,3-oxazin-2-yl]acetamide 3b

Yield: 68.00 %; m.p.: 110 \(^0\)C; IR (KBr, cm\(^{-1}\)): 3287.07 (NH), 1655.59 (C=O), 1564.95 (Ar-C=C), 1341.25 (C-N), 1178 (C-O-C), 1090.55 (Ar-Cl); \(^1\)H NMR (300 MHz, CDCl\(_3\) \(\delta\)): 2.16 (d, 3H, CH\(_3\)), 2.82 \([s, 6H, N(CH\(_3\)\textsubscript{2})]\), 6.12 (d, 1H, CH), 6.30 (d, 1H, CH), 6.48-7.53 (m, 9H, aromatic), 8.62 (m, 1H, NH). Anal. calcd. for C\textsubscript{20}H\textsubscript{21}N\textsubscript{3}O\textsubscript{2} (mw = 335.39): C, 71.62; H, 6.31; N, 12.53 %. Found: C, 71.72; H, 6.28; N, 12.77 %.

\(N\)-[6-[4-Chlorophenyl]-4-phenyl-6\(H\)-1,3-oxazin-2-yl]acetamide 3c

Yield: 71.79 %; m.p.: 96 \(^0\)C; IR (KBr, cm\(^{-1}\)): 3313.11 (NH), 1661.37 (C=O), 1602.56 (Ar-C=C), 1218.79 (C-N), 1185 (C-O-C), 1090.55 (Ar-Cl); \(^1\)H NMR (300 MHz, CDCl\(_3\) \(\delta\)): 2.16 (d, 3H, CH\(_3\)), 6.12 (d, 1H, CH), 6.30 (d, 1H, CH), 7.15-7.52 (m, 9H, aromatic), 8.62 (m, 1H, NH). Anal. calcd. for C\textsubscript{18}H\textsubscript{15}ClN\textsubscript{2}O\textsubscript{2} (mw = 326.77): C, 66.16; H, 10.85; N, 8.57 %. Found: C, 65.11; H, 4.37; N, 8.35 %.

\(N\)-[6-[4-Nitrophenyl]-6\(H\)-1,3-oxazin-2-yl]acetamide 3d

Yield: 57.87 %; m.p.: 120 \(^0\)C; IR (KBr, cm\(^{-1}\)): 3105.8 (NH), 1658.48 (C=O), 1599.66 (Ar-C=C), 1512.88 (Ar-NO\(_2\)), 1215.9 (C-N), 1123 (C-O-C); \(^1\)H NMR (300 MHz, CDCl\(_3\) \(\delta\)): 2.16 (d, 3H, CH\(_3\)), 6.12 (d, 1H, CH), 6.30 (d, 1H, CH), 7.25-7.88 (m, 10H, aromatic), 8.62 (m, 1H, NH). Anal. calcd. for C\textsubscript{18}H\textsubscript{15}N\textsubscript{3}O\textsubscript{4} (mw = 337.3): C, 64.09; H, 4.48; N, 12.46 %. Found: C, 64.30; H, 4.58; N, 12.58 %.
N-[6-(4-Methoxyphenyl)-4-phenyl-6H-1,3-oxazin-2-yl]acetamide 3e

Yield: 68.00 %; m.p.: 74 °C; IR (KBr, cm\(^{-1}\)):
3308.29 (NH), 1655.59 (C=O), 1602.56 (Ar-C=C), 1341.25 (Ar-C-O), 1213.01 (C-N), 1167 (C-O-C);
\(^1\)H NMR (300 MHz, CDCl\(_3\)) δ: 2.16 (d, 3H, CH\(_3\)), 3.75 (s, 3H, CH\(_3\)), 6.12 (d, 1H, CH), 6.30 (d, 1H, CH), 6.77-7.52 (m, 9H, aromatic), 8.62 (m, 1H, NH).

Anal. calcd. for C\(_{19}\)H\(_{18}\)N\(_2\)O\(_3\) (mw = 322.35): C, 70.79; H, 5.63; N, 8.69 %. Found: C, 70.51; H, 5.50; N, 8.79 %.

N-[6-(4-Hydroxyphenyl)-4-phenyl-6H-1,3-oxazin-2-yl]acetamide 3f

Yield: 41.00 %; m.p.: 86 °C; IR (KBr, cm\(^{-1}\)):
3313.11 (NH), 2929.34 (Ar-OH), 1661.37 (C=O), 1602.56 (Ar-C=C), 1218.79 (C-N), 1160 (C-O-C);
\(^1\)H NMR (300 MHz, CDCl\(_3\)) δ: 2.16 (d, 3H, CH\(_3\)), 6.05 (s, 1H, OH), 6.12 (d, 1H, CH), 6.30 (d, 1H, CH), 6.80-7.52 (m, 9H, aromatic), 8.62 (m, 1H, NH).

Anal. calcd. for C\(_{18}\)H\(_{16}\)N\(_2\)O\(_3\) (mw = 308.33): C, 70.12; H, 5.23; N, 9.09 %. Found: C, 70.00; H, 5.20; N, 9.09 %.

Antimicrobial activity

The synthesized compounds were subjected to antimicrobial screening by serial dilution method [12]. The minimum inhibitory concentration (MIC) for the initial set of compounds was investigated against standard bacterial strains such as gram positive *Staphylococcus aureus* (NCIM-2079), *Bacillus subtilis* (NCIM-2063) and gram negative *Escherichia coli* (NCIM-2089), *Proteus vulgaris* (NCIM-2027) and compared with ampicillin as a standard drug. The stock solutions of the test compounds were prepared in dimethyl sulfoxide. The concentrations of the tested compounds were 1000, 500, 250, 125, 62.5, 31.25, 15.625, 7.8125 µg/mL.

Results and Discussion

For the initial set of compounds (2a-f, 3a-f), the substituents at the fourth position of phenyl ring in the series of 6-[4-substitutedphenyl]-4-phenyl-6H-1,3-oxazin-2-aminos and *N*-[6-(4-substitutedphenyl)4-phenyl-6H-1,3-oxazinyl]acetamides have been selected according to the Topliss modified approach (table I). Selected substituents for the initial set compounds were hydrogen, dimethyl amino, chloro, nitro and methoxy with \(\text{sigma}\) values 0.00, 0.83, 0.23, 0.78 and -0.27 respectively and \(\text{pi}\) values 0.00, 0.18, 0.70, -0.28 and -0.04 respectively. These substituents have varied combinations of \(\text{sigma}\) and \(\text{pi}\) values, imparting varied electronic and lipophylic character to the compound.
Table I

Substituents used at the fourth position of the phenyl ring.

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2a, 3a</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>2b, 3b</td>
<td>N(CH₃)₂</td>
</tr>
<tr>
<td>3</td>
<td>2c, 3c</td>
<td>Cl</td>
</tr>
<tr>
<td>4</td>
<td>2d, 3d</td>
<td>NO₂</td>
</tr>
<tr>
<td>5</td>
<td>2e, 3e</td>
<td>OCH₃</td>
</tr>
<tr>
<td>Final set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2f, 3f</td>
<td>OH</td>
</tr>
</tbody>
</table>

The synthesis scheme has three steps (Fig 1). In the first step, acetophenone and the substituted aromatic aldehydes reacted in the presence of sodium hydroxide to give substituted chalcones (Claisen-Schmidt condensation). In the second step, substituted chalcones cyclized by reacting with urea to produce 6-[4-substitutedphenyl]-4-phenyl-6H-1,3-oxazin-2-amines which are further acetylated in the third step to N-[6-(4-substitutedphenyl)-4-phenyl-6H-1,3-oxazinyl]acetamides. The progress of the reaction was monitored by thin layer chromatography (TLC) using benzene and benzene-methanol as mobile phase. The single spot on TLC and sharp melting points confirmed the purity of the compounds synthesized. Further, the title compounds were structurally characterized by elemental analysis, IR and NMR spectral data.
The antimicrobial activity evaluation of the initial set of compounds (2a-e, 3a-e) found that compounds 2e and 3e both bearing methoxy substituent at the fourth position of the phenyl ring were good antimicrobial agents with the lowest MIC values in comparison to other test compounds. For the methoxy substituent, both sigma and pi values are negative. It was suggested that if a new substituent is selected, which means having more negative sigma and pi values, it could give better antimicrobial agents from this series. There are hydroxy (σ = -0.37, π = -0.61) and amino (σ = -0.66, π = -1.23) substituents with negative sigma and pi values. In order to improve the antimicrobial potential in the series of 6-[4-substitutedphenyl]-4-phenyl-6H-1,3-oxazin-2-amines and N-[6-(4-substitutedphenyl)-4-phenyl-6H-1,3-oxazinyl]acetamides, hydroxy substituent has been selected to synthesize the second set of compounds (2e, 3e). The antimicrobial screening of the second set of compounds (2e, 3e) has shown a reduction in MIC values (table II) in comparison with the most active compounds of the initial set (2f, 3f). The study reveals that the substituent at the fourth position of the phenyl ring of 6-[4-substitutedphenyl]-4-phenyl-6H-1,3-oxazin-2-amines and N-[6-(4-substitutedphenyl)-4-phenyl-6H-1,3-oxazinyl] acetamides should have negative sigma and pi values for optimum antimicrobial activity.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Minimum Inhibitory Concentration (MIC) (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gram + Ve Staphylococcus aureus Bacillus subtilis Escherichia coli Proteus vulgaris</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>25 12.50 12.50 25</td>
</tr>
<tr>
<td>Initial set</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>62.50 62.50 62.50 125</td>
</tr>
<tr>
<td>2b</td>
<td>500 250 250 500</td>
</tr>
<tr>
<td>2c</td>
<td>125 62.50 62.50 125</td>
</tr>
<tr>
<td>2d</td>
<td>125 250 500 125</td>
</tr>
<tr>
<td>2e</td>
<td>31.25 62.50 125 125</td>
</tr>
<tr>
<td>3a</td>
<td>250 250 500 250</td>
</tr>
<tr>
<td>3b</td>
<td>125 500 125 125</td>
</tr>
<tr>
<td>3c</td>
<td>250 1000 250 250</td>
</tr>
<tr>
<td>3d</td>
<td>500 250 250 500</td>
</tr>
<tr>
<td>3e</td>
<td>125 125 125 125</td>
</tr>
<tr>
<td>Final set</td>
<td></td>
</tr>
<tr>
<td>2f</td>
<td>31.25 31.25 62.50 62.50</td>
</tr>
<tr>
<td>3f</td>
<td>62.50 62.50 31.25 62.50</td>
</tr>
</tbody>
</table>
Conclusions

Topliss modified approach can be successfully applied for the selection of substituent at the fourth position of the phenyl ring in the series of 6-[4-substitutedphenyl]-4-phenyl-6H-1,3-oxazin-2-amines and N-[6-(4-substitutedphenyl) - 4 - phenyl - 6H - 1,3 - oxazinyl] acetamides for the development of better antimicrobial agents. The study revealed that electron donating polar substituents at the fourth position of the phenyl ring from 6-position are required to improve antimicrobial potential in the series of 6-[4-substitutedphenyl] - 4 - phenyl - 6H - 1,3 - oxazin -2- amines and N-[6-(4-substitutedphenyl)-4-phenyl-6H-1,3-oxazinyl]acetamides.

References

9. Bhatia MS, Choudhari PB, Ingle KB, Zarekar BE, Synthesis, screening and QSAR studies of 2, 4-disubstituted1,5-benzodiazepine derivative, Indian Drugs, 2009, 46, 196-201.

Manuscript received: March 9th 2011