CONTENTS

- OLD AND NEW IN LIPID LOWERING THERAPY: FOCUS ON THE EMERGING DRUGS
 Daniela Bartolo, Camelia Diaconu, Elisabeta Badila, Ana Maria Daraban

- A BRIEF OVERVIEW ON COCRYSTALS AND THEIR PHARMACEUTICAL APPLICATIONS
 Mandi Kumar Sarangi

- SQUALANE – NATURAL RESOURCES AND APPLICATIONS
 Ioana Popa, Narcisa Elena Barbu, Selcaba Mihaela

- IN VITRO ESTROGENIC/ANTI-ESTROGENIC EFFECTS OF CERTAIN FOOD ADDITIVES AND COSMETIC PRESERVATIVES
 Ana Popa, Bela Kiss, Tudor Druegan, Julien Cherfan, Felicia Loghin

- COMPARATIVE STUDY ON THE VOLATILES’ COMPOSITION OF IRS DICHTOMA FALL RHIZOME EXTRACTS
 Włodzimierz Kułak-Koch, Krysztof Skalecki-Woźniak, Elżbieta Sieniawska, Jarosław Wiedeński, Olgona Bartas, Piotr Urun, Paweł Glowiak

- THE SYNERGISTIC ANTI-OXIDATIVE INTERACTION OF CODEINE AND PREGBALIN IN A SOMATIC PAIN MODEL, IN MICE
 Eliza Grajță-Popa, Liliana Mititelu Tartau, Raoul Vasile Lupușoru, Cătălina Elena Lupușoru, Iulian Stoicu, Lăcătușă-Oncu

- ARE SSRIs EQUALLY SAFE IN PREGNANCY? FLUOXETINE AND CITALOPRAM EXPERIMENTAL STUDY
 Bianca Eugenia Șer, Camil Eugen Vargh, Mădălina Șoicescu, Ovidiu Simion Cotoi, Marius Ștefan Măruști, Marija T. Dogaru

- BETADINE® IN CHEMICAL PLEURODESIS
 Claudiu Nistor, Aurelian-Emil Ranetti, Adrian Cicică, Daniel Pantile, Laura-Mariana Constantin, Roxana Brănică-Voicu

- ANTI-TUMOR EFFECT OF EUONYMUS EUROPAEUS ON EHRlich TUMOR CELLS IN VITRO
 Bogdan Sevastre, Orsolya Sarapata, Nelki K. Olah, Roxana L. Stan, Marius Taleșcu, Ioan Marcus, Corneliu Cătăo

- SPETRAL CHARACTERIZATION OF NEW 2-(4-ETHYLMETHOXYMETHYL)N-
 (ARYL-CARBAMOYL) BENZAMIDES
 Miron Teodor Caporoi, Carmen Limbar, Alexandru Vasile Messer, Diana Camelia Nută, Laurentiu Morigliag

- PHYTOBIOLOGICAL TESTING OF SOME COMPOUNDS WITH 4(H) - QUINAZOLONE STRUCTURE
 Mihaela Brikatu, Octavian Tudoril Gabor, Ileana Cornelia Chiriță, Mihaela Denu, Adriana Juliana Anghel

- THE IMPACT OF DIFFERENCES BETWEEN REGULATORY GUIDANCE FOR IV IN VITRO TESTING ON THE DISSOLUTION PROFILES OF MYCOFENOLATE MOPETIL
 Naiha Numa Anjel, Dumitru Lupuleșcu, Mirela Adriana Mitu, Ana Andreea Stănescu, Cătălin Donia, Dalia Simona Miron, Flavia Stefan Rădulescu

- THE LEVELS OF SERUM BIOMARKERS OF INFLAMMATION IN HEMODIALYSIS PATIENTS
 Angela Antonescu, Simona Ioana Vicas, Alin C. Trudea, Ioana Ratiu, Ioana Andreea Antonescu, Otilia Micle, Laura Vicas, Mariana Muresan, Felicia Gligor

- RESEARCHES UPON INDIGENOUS HERBAL PRODUCTS FOR THERAPEUTIC VALORIZATION IN METABOLIC DISEASES. NOTE II. POLYPHENOLS CONTENT, ANTIOXIDANT ACTIVITY AND CYTOTOXIC PROPERTIES OF BETULAE FOLIUM DRY EXTRACT
 Teodoră Costeala, Laurian Vlăs, Viorela Estudor, Maria-Leda Popescu, Cerasela-Elena Gîrî

- STUDY ON THEIMIDAZOPLON – INDUCED SIDE EFFECTS IN HAMSTERS
 Maria Crivianeau, Manuela Militariu, Denisa Ioana Udrea, Valentin Niculescu, Camelia Papuc, Cornelia Ana Ioniță, Elena Rotaru

- NICOTINE DETERMINATION FROM TABACCO BY GC/MS
 Dorin Spăca, Adrian Spăca, Lumeria Agorobă, Elena Bătuariu

- PERCUTANEOUS PENETRATION ENHANCEMENT OF PROPRANOLOL HYDROCHLORIDE FROM HPMC-BASED HYDROETHANOLIC GELS CONTAINING TERPENES
 Lavinia Vlășcu, Ioana Olăriu, Georgea Cozască, Vicentiu Vlășcu, Călin Poporu, Stănciulescu Corina, Ana Maria Mit, Zoltan Szabadal, Dumitru Lupuleșcu

- PHARMACOKINETIC EVALUATION OF A NOVEL RHEUMIUM (III)-OFOXACIN COMPLEX, AS POTENTIAL THERAPEUTIC AGENT
 Bruno Stefani Veleșcu, Valentina Anuța, Valentina Ularu Oșoșă

- RESEARCHES CONCERNING THE PROFITABILITY OF THE COMMUNITY PHARMACY WITHIN THE CONTEXT OF WORLD ECONOMIC AND FINANCIAL CRISIS
 Anamaria Boroga, Gabriela Carmen Oros, Constantin Poliscenciu, Simona Milea

- THE STUDY OF PHARMACOPRIAS USED IN THE ROMANIAN AREA IN XVIII-XX CENTURIES: EVOLUTION OF PROPORTIONS FOR DRUG SUBSTANCES AND PHARMACEUTICAL PREPARATIONS
 Emilia Stancu, Ana Carata, Adriana-Elena Tărice, Valentina Sorocanău

Romanian Society for Pharmaceutical Sciences

Volume 62
September - October 2014

EDITORIAL BOARD

Editor-in-Chief
Prof. Niculina MîTREA-VASILESCU, PhD
Associate Editor-in-Chief
Prof. Ileana CHIRIȚĂ PhD

Managing Editors:
Prof. Adrian ANDRIES, PhD
Prof. Camelia Elena STECOZA, PhD
Assoc. Prof. Andreia Leția NITULESCU-ARSENE, PhD

Printech” Publishing House
Bucharest-Romania

ISSN 0014-8237 (for the Printed Edition)
ISSN 2065-0019 (for the On-Line Edition)
STUDY ON THIAMPHENICOL – INDUCED SIDE EFFECTS IN HAMSTERS

MARIA CRIVINEANU¹, MANUELLA MILITARU¹, DENISA IOANA UDEANU², VALENTIN NICOALĂ⁴, CAMELIA PAPUC¹, CORINA ANA IONIȚĂ², ELENA ROTARU¹

¹University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
²University of Medicine and Pharmacy “Carol Davila”, Faculty of Pharmacy, 2 Traian Vuia, Bucharest
*corresponding author: valinicorescu@yahoo.com

Abstract

The present study investigated the possible adverse effects of thiamphenicol in hamsters following the administration of therapeutic doses. Thiamphenicol was administered by intramuscular injection at a dose rate of 35 mg/kg body weight once daily for 7 days. Functional changes of bone marrow, liver and kidney were monitored; bone marrow cytology and histopathology of the liver, kidneys and heart were performed. Enzymatic markers of hepatic cell damage were slightly increased in the treatment groups. Urea and creatinine concentrations were higher in thiamphenicol-treated hamsters than in the control group, suggesting an alteration in renal function. Haematology parameters were altered in thiamphenicol-treated hamsters and bone marrow smears showed slight bone marrow depression affecting all haematopoietic cell lines. Following histopathological investigations, no changes in liver morphology could be observed. Isolated degenerative changes were observed in the proximal convoluted tubule epithelium, without loss of integrity or changes in renal architecture. Myocardial arteriole and capillary stasis and incipient haemolysis were observed as well as alterations in longitudinally sectioned myocardioocytes.

Keywords: thiamphenicol, hamsters, bone marrow depression, anaemia.

Rezumat

Prezentul studiu a avut drept scop identificarea unor posibile efecte adverse la hamsteri în urma administrării intramusculare a tiamfenicolului, în doze terapeutice (35 mg/kg corp, o dată pe zi, 7 zile). Au fost urmărite eventualele modificări funcționale ale măduvei osoase hematogene, ficatului și rinichilor; au fost efectuate examene citologice ale măduvei osoase și examene histopatologice ale fictului și rinichilor. În urma tratamentului, markerii enzimatici ai citolizei hepatice au prezentat creșteri ușoare. Urea și creatinina au prezentat concentrații serice mai crescute la hamsterii tratați, sugerând o perturbare a funcției renale. Tabloul hematologic a fost modificat, iar fruntiurile din măduva osoasă au indicat o ușoară depresie a acesteia, afectând toate linile celulare. Examenele histopatologice nu au relevat modificări notabile ale morfologiei hepatice. Modificările degenerative izolate au fost observate la nivelul epiteliului tubilor contorți proximali, fără pierderea integrității și fără modificări ale arhitecturii renale. La nivelul cordului au fost observate fenomene de stază în arteriole și capilare, hemoliză incipientă și alterări ale cardiomioцитelor secționate longitudinal.

Keywords: thiamphenicol, hamsters, bone marrow depression, anaemia.
Introduction

The risk of adverse drug reactions has to be considered in establishing dosing regimens for drugs; although the occurrence of side effects is not always predictable, such events can often be reduced or avoided when the toxicological profile of a drug is known.

Thiamphenicol is a broad-spectrum antimicrobial agent used to control infections in humans and animals. It is bacteriostatic, at dosages used therapeutically, in both Gram-positive and Gram-negative aerobes and some anaerobes.

Thiamphenicol is a derivative of chloramphenicol, in which one aromatic nitro group (p-nitro) is substituted by a methylsulfonyl group. Some authors consider that thiamphenicol is one to two times less active than chloramphenicol, although it has similar activity against Haemophilus spp., Bacteroides fragilis and streptococci [6]. Thiamphenicol can be inactivated by bacterial chloramphenicol acetyltransferases, reflecting cross-resistance [1, 14].

Absorption and distribution of thiamphenicol are similar to those of chloramphenicol; thiamphenicol is equally well distributed into tissues and has an oral bioavailability of approximately 60%. Thiamphenicol is excreted unchanged in the urine [6].

Chloramphenicol is known to be hemotoxic in humans. There are two forms of toxicity. The first is a commonly-occurring, dose-related, reversible bone marrow depression, which develops during treatment. The second and rare effect, irreversible and often fatal, is represented by aplastic anaemia, which develops after treatment [14]. The bone marrow suppression caused by chloramphenicol is mainly due to DNA damage, characterized by helix destabilization and strand breakage, following the reduction of the nitro group. Similar phenomena have been observed in dogs and cats treated with high doses of chloramphenicol [7].

Thiamphenicol has been developed as a replacement for chloramphenicol to avoid haemotoxicity. Thiamphenicol does not produce the same effects as chloramphenicol on DNA because it does not contain a p-nitro group and is believed not to induce irreversible bone marrow aplasia and aplastic anaemia in humans, due to its different chemical structure [8, 11]. However, several studies have indicated that thiamphenicol is hemotoxic in rats and mice [2, 14, 15]. There is even some evidence that thiamphenicol causes a dose-dependent reversible bone marrow suppression more frequently than chloramphenicol [3, 6]. This reversible myelosuppression appears to be related to the blood concentration of thiamphenicol, the dose...
Thiamphenicol can also induce haemolysis in subjects with glucose-6-phosphate dehydrogenase deficiency, an enzyme that plays a role in the energy metabolism of red blood cells. Erdogan et al. (2004) reported a decrease of erythrocyte glucose-6-phosphate dehydrogenase activity under the influence of thiamphenicol.

Other side effects of thiamphenicol include testicular toxicity in rats and pruritus in some humans (less than 0.1%) [9, 11].

The aim of this study was to record the possible side effects of thiamphenicol following intramuscular administration to hamsters at a dose of 35 mg/kg b.w. Following treatment, clinical observations, haematological and biochemical parameters as well as bone marrow cytology and histopathology of the liver, kidney and heart are presented.

Materials and Methods

The experimental studies were conducted on European common hamsters (*Cricetus cricetus*). The treatment group consisted of 10 hamsters (5 males and 5 females), aged 4 months and weighing about 150 g. The control group included five hamsters of the same age and weight. The hamsters were kept in separate cages under a light/dark regime of 12/12 hours. Water was provided *ad libitum* and commercial hamster feed supplemented with wheat, corn, grass, cabbage and carrots was provided. All experiments were performed in compliance with European Communities Council Directive 1986 (86/609/EEC) and Ordinance No. 37 of the Romanian Government from February 2\(^{nd}\), 2002.

Thiamphenicol approved for use in pigs and cattle (Thiamphenicol 20% inj, Dutch Farm International BV, The Netherlands) was administered by intramuscular injection at a dose rate of 35 mg/kg b.w. once daily for 7 days. Throughout the study, the hamsters were monitored and any change in their general health status was recorded.

Hamsters were euthanized, by cervical dislocation, after anesthesia with xylazine and ketamine, on day 8. Blood samples were collected for biochemical evaluation (aspartate aminotransferase - AST, alanine aminotransferase - ALT, alkaline phosphatase - ALP, blood urea nitrogen - BUN, creatinine) and haematology evaluation (number of erythrocytes, hematocrit, hemoglobin, leukocyte formula). Bone marrow samples were collected (from the sternum and femur) for cytology. Samples of liver, kidney and heart were taken for histopathological examination [10]. Smears from bone marrow were stained by May-Grunwald Giemsa (MGG) method.
Samples of liver, kidney and heart were fixed in 10% formaldehyde solution. After the inclusion in paraffin, 5 cm sections were stained using the trichromic Masson method. Statistical evaluation of the measured values was made using One-Way ANOVA.

Results and Discussion

Clinical observations

There was registered a discomfort immediately after the intramuscular administration, manifested as agitation and squeaking for a few minutes after injection. Slight apathy (which increased in time) was reported during the first three days of treatment. Erythema of the hairless regions and moderate pruritus at the injection site were reported. Skin rash was noted in 6 out of 10 hamsters in the treatment group. Four hamsters from the treatment group had diarrhea for the last 2 days of treatment.

Biochemical parameters evaluation

The clinical chemistry results are shown in Table 1.

Table I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group</th>
<th>Range</th>
<th>Mean ± Std. Dev.</th>
<th>Std. Err.</th>
<th>Reference interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (IU/L)</td>
<td>Control</td>
<td>37-45</td>
<td>41.4±3.4</td>
<td>1.5</td>
<td>28-107(2)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>46-65</td>
<td>54.9±5.5**</td>
<td>1.7</td>
<td>25-70(1)</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>Control</td>
<td>41-64</td>
<td>53.6±9.5</td>
<td>4.2</td>
<td>53-202(2)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>51-84</td>
<td>68.5±11.6*</td>
<td>3.6</td>
<td>28-140(3)</td>
</tr>
<tr>
<td>ALP (IU/L)</td>
<td>Control</td>
<td>131-162</td>
<td>146.4±12.8</td>
<td>5.7</td>
<td>8-202(3)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>163-198</td>
<td>184.1±12.5**</td>
<td>3.9</td>
<td>15-160(3)</td>
</tr>
<tr>
<td>BUN (mg/dL)</td>
<td>Control</td>
<td>17-26</td>
<td>22.4±3.6</td>
<td>1.6</td>
<td>12-26(1)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>28-40</td>
<td>35.6±4.1**</td>
<td>1.3</td>
<td>12-25(3)</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>Control</td>
<td>0.3-0.5</td>
<td>0.44±0.09</td>
<td>0.04</td>
<td>0.4-1.0(1)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>1.1-1.9</td>
<td>1.44±0.32**</td>
<td>0.10</td>
<td>0.3-1.0(3)</td>
</tr>
</tbody>
</table>

(1)Suckow et al., 2012; (2)Thrall et al., 2004; (3)Research Animal Resources, University of Minnesota - Reference Values for Laboratory Animals. * indicates the presence of significant differences between thiamphenicol-treated group and control group (’ p<0.05; ** p<0.01)

Although hepatic enzymes activity, a marker of liver cell damage, was slightly higher in the treated hamsters (ALT: 54.9±5.5 IU/L; AST: 68.5±11.6 IU/L; ALP: 184.1±12.5 IU/L) than in the control group (ALT:
41.4±3.4 IU/L; AST: 53.6±9.5 IU/L; ALP: 146.4±12.8 IU/L), the values were still within reference interval for this species (Table 1). These findings show that liver function was not strongly impaired by thiamphenicol.

Urea and creatinine concentrations were significantly higher in hamsters treated with thiamphenicol (BUN: 35.6±4.1 mg/dL; creatinine: 1.44±0.32 mg/dL) than in the control hamsters (BUN: 22.4±3.6 mg/dL; creatinine: 0.44±0.09 mg/dL); these values exceeded the upper limit of the reference interval for this species. The obtained results suggest that thiamphenicol in the given dosing regimen affected the renal function.

Haematology

The haematology results are shown in Table II.

Table II

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group</th>
<th>Range</th>
<th>Mean ± Std. Dev.</th>
<th>Std. Err.</th>
<th>Reference interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (x10^6/µL)</td>
<td>Control</td>
<td>7.9-9.8</td>
<td>8.82±0.84</td>
<td>0.37</td>
<td>8.1-8.7(1); 6.8-7.5(2); 2.7-12.3(3)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>5.9-7.4</td>
<td>6.75±0.49</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Ht (%)</td>
<td>Control</td>
<td>36-44</td>
<td>40.0±3.4</td>
<td>1.5</td>
<td>30-50(2); 30-59(3)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>23-32</td>
<td>26.8±2.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>Control</td>
<td>15.3-16.3</td>
<td>15.78±0.43</td>
<td>0.19</td>
<td>15.7-18.0(2); 10.0-19.2(3)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>10.2-13.8</td>
<td>12.14±1.06</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>WBC (x10^9/µL)</td>
<td>Control</td>
<td>6.4-8.3</td>
<td>7.46±0.71</td>
<td>0.32</td>
<td>5-10(2); 3-15(3)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>4.0-5.9</td>
<td>5.15±0.64</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Neutrophils (%)</td>
<td>Control</td>
<td>19-29</td>
<td>24.0±4.1</td>
<td>1.8</td>
<td>26(1); 22-29(2); 17-35(3)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>22-31</td>
<td>26.3±3.3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Lymphocytes (%)</td>
<td>Control</td>
<td>66-77</td>
<td>71.4±4.5</td>
<td>2.0</td>
<td>69(1); 67.0-73.5(2); 60-80(3)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>64-76</td>
<td>70.0±5.9</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Monocytes (%)</td>
<td>Control</td>
<td>0-3</td>
<td>1.6±1.1</td>
<td>0.5</td>
<td>0.7-1.2(1); 2.4-2.5(2); 0.5(3)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>0-2</td>
<td>1.3±0.7</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Eosinophils (%)</td>
<td>Control</td>
<td>1-3</td>
<td>1.8±0.8</td>
<td>0.4</td>
<td>1-1.8(1); 0.7-1.1(2); 0-1.5(3)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>1-2</td>
<td>1.3±0.5</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Basophils (%)</td>
<td>Control</td>
<td>1-2</td>
<td>1.2±0.4</td>
<td>0.2</td>
<td>0.5-2(2); 0.5(3)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td>0-2</td>
<td>1.1±0.9</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

(1)Emminger et al., 1975; (2)Van Hoosier & McPherson, 1987; (3)Suckow et al., 2013; *: indicates the presence of significant differences between thiamphenicol-treated group and control group (p<0.01); NS: not significant differences.
In the treated group there were registered slight changes in the haematological parameters assessed: mainly a decrease in the erythrocytes. Count lower levels of haemoglobin and a lowered value of the haematocrit. The leukocytes count was comparable to the reference interval for this species.

Although RBC, Hb and Ht values were lower in the thiamphenicol-treated group (RBC: 6.75±0.49 x10^6/µL; Hb: 12.14±1.06 g/dL; Ht: 26.8±2.9%) than in the control group (RBC: 8.82±0.84 x10^6/µL; Hb: 15.78±0.43 g/dL; Ht: 40.0±3.4%), they were close to the lower limit of the reference interval for this species (according to various authors). However, the decrease of RBC, Hb and Ht suggests a certain degree of toxicity exerted by thiamphenicol on bone marrow, especially on the erythroid lineage.

Cytology and histopathology

The bone marrow smears showed hypocellularity, with a left shift of the maturation curve and an increased percentage of immature cell forms, as an expression of the inhibition of maturation and division (Fig. 1).

Figure 1.
Cytology of the bone marrow of hamsters treated with thiamphenicol for 7 days. Heterogeneous aspect of the bone marrow in femur and sternum. Presence of precursor elements of both the erytroid lineage (arrow) and myeloid lineage (white star). Mature neutrophils (triangle) and a variable number of basophilic promegakaryocytes and megakaryocytes (white circle) were found in all smears. (MGG stain, ob. 20 and 100)
The results of bone marrow cytology confirmed that there was a haematopoietic disorder that included all haematopoietic cell lineages. The toxic hyporegenerative anaemia, evidenced by the presence of basophilic and polychromatophilic erythroblasts, can lead to blood disorders such as erythropenia and leukocytopenia. Individuals with bone marrow suppression (impaired myeloid and erythroid lines), had microscopic morphological abnormalities, manifested as vacuolation of bone marrow blast cells and depression of erythropoiesis.

The cytology of bone marrow could be correlated with the recorded changes of haematological parameters, the decrease of erythrocytes count, haemoglobin and haematocrit being a natural consequence of the alterations observed in smears made from bone marrow.

There were minor and variable changes in liver structure observed in the treated hamsters that varied between individuals. The observed changes included stasis in centrilobular veins (Figure 2).

In general, the liver architecture remained preserved. Centrilobular hepatocytes exhibited a low degree of granular degeneration, without hepatocyte necrosis. This was considered to be a non-specific, reversible, low severity lesion, because it was observed inconsistently in the animals from the treatment group.

We hypothesize that it is related to individual variability rather than to the action of thiamphenicol. Intravascular haemolysis was registered in two animals and it coexisted with centrilobular vein stasis. Haemolysis was observed only in two hamsters from the treatment group, thus excluding the possibility that it may have been occurred during euthanasia (Figure 2).

In three of the ten hamsters there were isolated islands of hepatic haematopoiesis, which can be interpreted as an adaptive response to bone marrow suppression.

In conclusion, liver morphology was not significantly affected by the administration of thiamphenicol. The hepatocellular changes were of a reversible degenerative nature, and the minor morphological changes reported did not led to functional consequences as altered levels of serum enzymes markers of liver cell damage (AST, ALT, ALP).
Figure 2.

In the kidneys, marked interstitial stasis was noticed, while in the renal glomeruli stasis was observed inconsistently; intravascular hemolysis was present. However, in general, the renal tissue architecture was preserved. Only isolated focal degenerative changes, vacuolar degeneration,
without loss of integrity of renal tubules epithelium, were observed in the proximal convoluted tubule epithelium (Figure 3). Structural changes were considered to be of a reduced intensity and potentially reversible, taking into account the lack of tubular necrosis. The presence of pigment in the renal tubule lumen was also noted. The presence of hemosiderin at this level indicated that stasis had been present for some time in the kidneys and had not developed as a result of euthanasia (Figure 3).

Histopathological changes in the kidneys could be correlated with the recorded functional changes (increased concentrations of blood urea nitrogen and creatinine), but did not differ greatly from control group of hamsters.

![Histopathology of the kidneys of hamsters treated with thiamphenicol for 7 days.](image)

Figure 3.
Histopathology of the kidneys of hamsters treated with thiamphenicol for 7 days.

A – Cortical area - interstitial and glomerular stasis and haemolysis; oxyphyl cytoplasm of the convoluted tubules epithelium (Trichromic Masson stain, ob. 20). B – Cortical area - glomerular stasis and tubular degeneration (Trichromic Masson stain, ob. 40). C – Medullary area - stasis and interstitial hemolysis (Trichromic Masson stain, ob. 20). D – Medullary area - interstitial renal stasis and hemosiderin deposits in the renal tubules lumen (Trichromic Masson stain, ob. 40)

In the myocardium, stasis in arterioles and capillaries and incipient haemolysis were observed. Variable and segmental homogenization of longitudinally sectioned oxyphyl myocardioocytes was also noticed (Figure 4).
Figure 4.

Histopathology of the heart of hamsters treated with thiamphenicol for 7 days: stasis and weakly expressed haemolysis in the arterioles and capillaries (white triangle), homogenization and oxyphy segmentation of myocardiocytes (arrow) (Trichromic Masson stain, ob. 20)

In relation to bone marrow injuries, following this research, the administration of thiamphenicol in hamsters in the specified dose-rates and period is considered to be safe, taking into account that bone marrow depression is thought to be reversible, as reported by several studies [6, 14, 15]. Related to injuries caused by thiamphenicol in kidneys and liver tissue, although they were low as intensity and inconsistent, we recommend that the treatment with thiamphenicol to be accompanied by the administration of hepatoprotective products and sufficient water supply.

Special precautions are considered to be necessary in elderly patients and in those with kidney disorders: increased dosage intervals and/or decreased dose-rates, depending on the creatinine clearance; moreover, thiamphenicol should be avoided in individuals with anaemia or immunosuppression.

Conclusions

The administration of thiamphenicol to hamsters by intramuscular injection at a dose rate of 35 mg/kg b.w. once daily for 7 days resulted in minor changes in hepatic enzymes activity and significant increases of serum urea and creatinine levels. Haematologically, the most significant changes were the decrease of erythrocyte counts, haemoglobin and haematocrit values. Cytological examination of bone marrow smears showed hypocellularity and bone marrow suppression, with impaired myeloid and erythroid lineages. Histopathology examination did not reveal significant changes of liver and myocardium, only isolated focal degenerative changes were observed in kidneys.
References

Manuscript received: January 2014