ASSESSMENT OF ANTIOXIDANT CAPACITY OF SOME EXTRACTS FOR FURTHER USE IN THERAPY

LAURA VICĂȘ1, ALIN TEUȘDEA2, SIMONA VICĂȘ2*, ELEONORA MARIAN1, JURCA TUNDE1, MARIANA MUREȘAN1, FELICIA GLIGOR3

1University of Oradea, Medicine and Pharmacy Faculty, Oradea, Romania
2University of Oradea, Faculty of Environmental Protection, Oradea, Romania
3University Lucian Blaga Sibiu, The Faculty of Medicine, Sibiu, Romania

*corresponding author: sim_vicas@yahoo.com

Manuscript received: May 2014

Abstract
Salviae and Plantago species are plants known as having antioxidant effects. The aim of the study was to compare in vitro the antioxidant capacity of these medicinal plants from two different areas of Romania (Bihor and Arad counties) in order to use it in the future in the field of pharmacology and medicine. An UV-Vis spectra fingerprint (250-800 nm) of ethanol extracts from Salviae and Plantago species was recorded in order to establish the maximum absorption, specifically bioactive compounds. The bioactive compounds from those two extracts, polyphenols types were determined by the Folin-Ciocalteu method, and the total flavonoids have been determined through a spectrophotometric method. Antioxidant capacity of the extracts was evaluated by the following methods: DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2’-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt) and FRAP (the Ferric reducing antioxidant power). The results shown, that Salviae species are rich in polyphenols, while Plantago is rich in flavonoids being a good reason for their association.

Rezumat
Speciile de Salviae și Plantago sunt plante cunoscute ca având efecte antioxidante. Obiectivul lucrării a fost acela de a evalua capacitatea antioxidanță a acestora prin studiul comparativ a două surse vegetale din două zone diferite din România. Prin asocierea lor se poate realiza o formulă de suplimente nutritive cu rol protector celular. Extractelor vegetale li s-a trasat un spectru UV-VIS pentru a evidenția domenii în care absorb diverișii compuși bioactivi. Speciile bioactive din cele două extracte au fost evidențiate, cele de tipul polifenolilor totali au fost determinate prin metoda Folin-Ciocâlteu, iar flavonoidele totale au fost determinate printr-o metodă spectrototometrică. Capacitatea antioxidanță a extractelor a fost evaluată prin următoarele metode: DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2’-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt) și FRAP (the Ferric reducing antioxidant power). Rezultatele obținute au demonstrat că speciile de Salviae sunt mai bogate în polifenoli, iar cele de Plantago sunt bogate în flavonoide, fiind un bun argument pentru asocierea lor.

Keywords: antioxidant, polyphenols, Plantago sp., Salviae sp.

Introduction
Some food products contain compounds with antioxidant activity. In recent years the studies have shown that the widespread use of synthetic antioxidants in food can damage the health status of people.

Searching for compounds that can be used as natural additives and antioxidant, researchers’ attention turned to plant foods.

Many sources of antioxidants of plant origin have been studied in recent years and identified as potential antioxidants. Their effect is due to the presence of hydroxyl groups in their chemical structure [7]. Considering the antioxidant capacity of Salviae and Plantago species, we have aimed the evaluation of their activity comparatively, using two different plant sources, from two different areas of Romania, with the possibility of associating them in nutritional supplements formulas with cell protecting role.

For this purpose, we have applied the method for determining the scavenger action of diphenylpicrylhydrazyl radicals after establishing the total polyphenols content for two extracts obtained from two species of Salviae and Plantago.

Materials and Methods
Preparation of the herbal extracts
Two medicinal species were studied, each having their antioxidant efficiency demonstrated after their extracts were prepared. The studied species were Salviae sp. and Plantago sp. from different and unpopulated geographical areas of Bihor and Arad counties. Thus, two samples were obtained for each species, noted S1 (Salviae sp. – Bihor), S2 (Salviae sp. – Arad).
The fluid extract of Salviae folium was obtained by Squibb repercolation, having 70% alcohol as solvent [5]. The extract was standardized at a total polyphenols content of 0.25%, expressed in chlorogenic acid. The phenolic quantitative analysis was performed through thin layer chromatography and the quantitative determination through the official titrimetric method from the 10th edition of the Romanian Pharmacopoeia [14]. Extractum Salviae fluidum was produced in the Pharmaceutical Technology Laboratory of the Faculty of Medicine and Pharmacy Oradea [10].

The fluid extract of Plantago folium was prepared from Plantago sp. by Squibb repercolation, using 50% alcohol as a solvent [5, 14]. The extract was standardized at a total polyphenols content of 0.25% expressed in chlorogenic acid. The phenolic quantitative analysis was performed through thin layer chromatography and the quantitative determination through the official titrimetric method from the Romanian Pharmacopoeia X [14]. Extractum Plantago folium was produced in the Pharmaceutical Technology Laboratory of the Faculty of Medicine and Pharmacy Oradea [7].

UV-Vis spectrophotometric fingerprint of medicinal plant extracts

An UV-Vis spectrum was obtained for the 4 extracts (250-800 nm), after a prior dilution (1:500 v/v) using a Shimadzu UV-Vis 1700 PharmaSpec, Shimadzu Corp. Kyoto, Japan spectrophotometer.

Quantitative determination of bioactive compounds

Total polyphenols determination (Folin-Ciocalteu method)

The total polyphenols content was determined by the Folin-Ciocalteu method using the method proposed by Vicaș et al., with some modification. Briefly, the sample (Salviae fluidus extracts S1 and S2) and Plantago fluidus (P1 and P2) extracts (100 µL) was mixed with 1750 µL distilled water, 200 µL Folin-Ciocalteu reagent (dilution 1:10, v/v) and 1000 µL of 15% Na,HCO3 solution, and the mixture was incubated at room temperature, in the dark, for 2 hours. The absorbance was measured at 765 nm using a spectrophotometer Shimadzu mini UV-Vis [12]. The calibration curve was linear for the range of concentrations between 0.1-0.5 mg/mL gallic acid. Total polyphenols content of extracts was expressed as mg gallic acid equivalents (GAE)/mL extract, using the following equation based on the calibration curve:

\[y = 56.818571x - 0.066498 \quad (R^2 = 0.9983), \]

where

- x was the absorbance of the blank;
- y was the absorbance of the samples at 765 nm.

ABTS assay

Trolox Equivalents Antioxidant Capacity is a spectrophotometric method, widely used for the assessment of antioxidant activity of various extracts and performed using the method of Arnao et al. [1]. This method measures the ability of compounds to scavenge the ABTS+ cation radical in relation to Trolox. Shortly, the ABTS+ cation radical was produced by reacting the ABTS+ (2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) solution (7 mM) with potassium persulphate (2.45 mM) solution, keeping the mixture in dark at room temperature for 16 h. ABTS stock solution was diluted in order to obtain an absorbance of 0.70 ± 0.02 at 734 nm. After addition of 25 µL extract to 2.5 mL of diluted ABTS+, the
mixture was mixed very well (using vortex) for 30 seconds and the interaction between the antioxidants and the ABTS \(^+\) was monitored spectrophotometrically at 734 nm, exactly at 1 minute. The calibration curve was linear for the range of Trolox concentrations between 0.125 and 2 mmol/L, and the results were expressed in µmol Trolox equivalent/mL extract. The ABTS value was obtained using the following equation based on the calibration curve:

\[y = 1629x + 98.94 \quad (R^2=0.998), \]

where \(x\) was the absorbance and \(y\) was the µmol Trolox equivalent.

FRAP (Ferric Reducing Antioxidant Power) assay

The FRAP assay was applied according to the method of Benzie and Strain [2] with some modifications. The FRAP assay consists in the ferric tripyridyltriazine (Fe(III)-TPTZ) complex reduction to the ferrous tripyridyltriazine (Fe(II)-TPTZ) by an antioxidant at low pH [2]. The stock solutions included: 300 mM acetate buffer; 270 mg FeCl\(_3\)·6 H\(_2\)O dissolved in 50 mL distilled water; 150 mg TPTZ and 150 µL HCl, dissolved in 50 mL distilled water. The working FRAP solution was freshly prepared by mixing 50 mL acetate buffer, 5 mL FeCl\(_3\)·6 H\(_2\)O solution and 5 mL TPTZ solution. Plant extracts (100 µL) were allowed to react with 500 µL FRAP solution and 2 mL distilled water, for 1 h, in dark. Absorbance was measured at 595 nm using the spectrophotometer Shimadzu mini UV-Vis. The calibration curve was linear for the range of Trolox concentrations between 50 and 500µmol/L, and the results were expressed in µmol Trolox equivalent/mL extract. The FRAP value was obtained using the following equation based on the calibration curve:

\[y=0.0157x+0.0549 \quad (R^2=0.9981), \]

where \(x\) was the absorbance and \(y\) was the µmol Trolox equivalent/mL [4].

Statistical analysis

The antioxidant capacities comparison between crop locations of *Salviae* sp. and *Plantago* sp., was done by one-way analysis of variance, ANOVA (\(n = 4, p = 0.05\), with GraphPad Prism version 5.00 (GraphPad Software, San Diego, CA, www.graphpad.com). The multivariate ordination performed methods were principal component analysis, PCA, and hierarchical cluster analysis, HCA. The software used for the multivariate analysis was P.A.S.T. version 3.04 statistical software, (Palaeontology Statistics, Copyright Øyvind Hammer and D.A.T. Harper).

Results and Discussion

UV-VIS spectrophotometric fingerprint of medicinal plant extracts

UV-VIS spectrophotometric fingerprint of both medicinal plant extracts (*Salviae* sp. and *Plantago* sp.) were presented in Figure 1. The qualitative spectrophotometric analysis is a simple, very economic and easy to use technique to identify the main bioactive compounds. The maximum wavelengths specific for phenolic acids derivatives is 280, for flavonoids 280 and 340 nm, for carotenoids between 410-470 nm, for anthocyanins is between 520-535 and/or chlorophylls is 647 and 663 nm. In this case, both medicinal plants showed the maximum wavelengths in the domain between 280-375 nm (Table I), these means that these plant extracts are rich in bioactive compounds from phenolic acid and flavonoid classes.

![Figure 1](image.png)

Figure 1.

UV-VIS spectrophotometric fingerprint of *Plantago* (P1 and P2) and *Salviae* (S1 and S2) plant extracts.
The absorption peaks of each plant extract from UV-VIS spectra (data presented as values from one sample, for exemplification)

<table>
<thead>
<tr>
<th>Plant Extract</th>
<th>Peak Index</th>
<th>Peak Area</th>
<th>IntgP (%)</th>
<th>Row Index</th>
<th>Beginning λ (nm)</th>
<th>Ending λ (nm)</th>
<th>FWHM* (nm)</th>
<th>Center (nm)</th>
<th>Height (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1</td>
<td>19.941</td>
<td>30.19</td>
<td>87</td>
<td>262</td>
<td>303</td>
<td>34.10</td>
<td>287</td>
<td>0.595</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>40.358</td>
<td>61.09</td>
<td>132</td>
<td>303</td>
<td>375</td>
<td>57.71</td>
<td>332</td>
<td>0.754</td>
</tr>
<tr>
<td>P2</td>
<td>1</td>
<td>7.389</td>
<td>28.37</td>
<td>89</td>
<td>262</td>
<td>303</td>
<td>32.52</td>
<td>289</td>
<td>0.237</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.978</td>
<td>65.20</td>
<td>132</td>
<td>303</td>
<td>375</td>
<td>57.71</td>
<td>332</td>
<td>0.320</td>
</tr>
<tr>
<td>S1</td>
<td>1</td>
<td>10.230</td>
<td>32.57</td>
<td>84</td>
<td>262</td>
<td>303</td>
<td>33.89</td>
<td>284</td>
<td>0.303</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.251</td>
<td>54.92</td>
<td>130</td>
<td>303</td>
<td>375</td>
<td>66.16</td>
<td>330</td>
<td>0.288</td>
</tr>
<tr>
<td>S2</td>
<td>1</td>
<td>8.446</td>
<td>32.79</td>
<td>87</td>
<td>262</td>
<td>303</td>
<td>33.02</td>
<td>287</td>
<td>0.257</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15.055</td>
<td>58.45</td>
<td>130</td>
<td>303</td>
<td>375</td>
<td>65.03</td>
<td>330</td>
<td>0.254</td>
</tr>
</tbody>
</table>

* FWHM = full width at half maximum

Quantitative analysis of total polyphenols and flavonoids

The results of quantitative analysis regarding the content of total polyphenols and flavonoids are shown in Table II. The highest content of polyphenols was recorded both in the *Salviae fluidum* (S1) and *Plantago fluidum* (P1) extracts harvested from the same location Bihor county, (67.125 mg GAE/mL, 45.34 mg GAE/mL, respectively). Regarding the flavonoids content the highest values were obtained in the case of *Plantago fluidum* (P1) extract harvest from Bihor County (26.487 mg QE/mL).

Table II

Mean values (± standard deviation) of total polyphenols and flavonoids of *Salviae fluidum* extracts (S1 and S2) and *Plantago fluidum* (P1 and P2) extracts from two different crop locations

<table>
<thead>
<tr>
<th>Total polyphenols</th>
<th>Rsqr; Rsqr. adj</th>
<th>p</th>
<th>Flavonoids</th>
<th>Rsqr; Rsqr. adj</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg GAE/mL)</td>
<td></td>
<td></td>
<td>(mg QE/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>$67.125^a \pm 1.995$</td>
<td>0.999; < 0.0001</td>
<td>$11.289^a \pm 0.112$</td>
<td>0.999; < 0.0001</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>$38.973^b \pm 1.088$</td>
<td>0.990</td>
<td>$11.759^a \pm 0.085$</td>
<td>0.999; < 0.0001</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>$45.348^a \pm 0.220$</td>
<td>0.990</td>
<td>$26.487^b \pm 0.353$</td>
<td>0.999; < 0.0001</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>$40.205^a \pm 0.704$</td>
<td>0.990</td>
<td>$17.430^b \pm 0.126$</td>
<td>0.999; < 0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Different letters across columns for each variable denotes statistical significant differences between the samples means. Results are expressed as mean ± standard deviation (n = 4).

Antioxidant capacity of medicinal plant extracts

Antioxidant properties of medicinal plants (*Salviae folium* and *Plantago folium*) were determined by three methods, DPPH, ABTS and FRAP. The results are shown in Table III. The scavenging effect of plant extracts, as determined by DPPH method, is measured as percentage of inhibition (%) of DPPH radical, and the antioxidant capacity of extracts from ABTS and FRAP methods is measured as Trolox equivalents (TE).

One-way analysis of variance of antioxidant capacities of *Salviae fluidum* and *Plantago fluidum* extracts revealed that there are significant differences (p < 0.0001) between the cropping locations (Bihor vs. Arad) with high level of variance explanation (i.e. high Rsqr/Rsqr. adj. values) (Table III).

In order to highlight which of the bioactive compounds content/antioxidant capacity are more affected by the crop locations, a relative ratio was calculated for *Salviae fluidum* (S1 vs. S2) and *Plantago fluidum* (P1 vs. P2) extracts (Figure 2, a-c).

Table III

The antioxidant capacities for *Salviae fluidum* (S1 and S2) and *Plantago fluidum* extracts harvested from two different crop locations

<table>
<thead>
<tr>
<th>FRAP (mmolTE/mL)</th>
<th>Rsqr; Rsqr. adj</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 $33.148^d \pm 0.088$</td>
<td>0.993; 0.991</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>S2 $34.319^c \pm 0.139$</td>
<td>0.999</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>P1 $29.771^e \pm 0.450$</td>
<td>0.999</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>P2 $25.639^d \pm 0.399$</td>
<td>0.999</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DPPH (%)</th>
<th>Rsqr; Rsqr. adj</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 $59.173^d \pm 0.071$</td>
<td>0.986; 0.982</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>S2 $52.957^c \pm 0.682$</td>
<td>0.986; 0.982</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>P1 $59.006^d \pm 0.222$</td>
<td>0.999; 0.998</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>P2 $59.555^d \pm 0.238$</td>
<td>0.999; 0.998</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABTS (umolTE/mL)</th>
<th>Rsqr; Rsqr. adj</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 $17.873^a \pm 0.151$</td>
<td>0.999; 0.999</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>S2 $15.055^c \pm 0.142$</td>
<td>0.999; 0.999</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>P1 $15.337^b \pm 0.071$</td>
<td>0.999; 0.999</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>P2 $15.337^b \pm 0.101$</td>
<td>0.999; 0.999</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Different letters across column for each variable denote statistical significant differences between the samples means. Results are expressed as mean ± standard deviation (n = 4).
The relative ratios between crop location (Bihor county – indexed with 1 and Arad county – indexed with 2) in the case of bioactive compounds, total polyphenols (a) and flavonoids (b) and antioxidant capacities, determined by three different methods: FRAP (c), DPPH (d), ABTS (e) of Salviae fluidum and Plantago fluidum extracts.

Figure 2.

Multivariate analysis

Multivariate analysis was performed in order to test the presence of relationships between variables and samples groups and to establish the differences, similarities or samples patterns of analysed data. Principal component analysis (PCA) considered quadruple samples (n=4) for each cropping location group. For PCA model input was considered the correlation matrix of data, due the fact that the variables present significant different variances; also, in order to extract the sample grouping information, only the “between groups” analysis was performed. The considered variables were five antioxidant results. First two principal components (PC1 and PC2) explain 90.215% of total variance, thus the discrimination between cropping locations of Salviae sp. and Plantago sp. is statistical significant. First principal component (PC1) basically is a linear combination of the variables and has the main property to explain the most of the variable values variability. This means that PC1 will be strong by
correlated with the variable next to its axes and can “measure” the differences between the samples through the corresponding variables. The second principal component (PC2) is orthogonal on the first one denoting that it explains mostly the rest of unexplained variability by the PC1. Eigen values of the first two principal components are high above the unit values showing that these components must be taken into account to analyse data in multivariate way (Table IV).

Antioxidant capacities such as ABTS and DPPH variables are positive by loaded against the first principal component, PC1 (Figure 3a). The FRAP variable is negative by loaded against the PC1 axis. These variables have the highest PC1 contributions and perform the discrimination between the PC1 positively loaded S1, P1, P2 and S2 which is negatively loaded against PC1.

Table IV
Principal components properties drawn out from principal component analysis (PCA) of antioxidant capacity for Salviae fluidum and Plantago fluidum extracts

<table>
<thead>
<tr>
<th>PC</th>
<th>Eigenvalue</th>
<th>% variance</th>
<th>Cumulative % variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.67423</td>
<td>53.485</td>
<td>53.485</td>
</tr>
<tr>
<td>2</td>
<td>1.83651</td>
<td>36.730</td>
<td>90.215</td>
</tr>
<tr>
<td>3</td>
<td>0.489266</td>
<td>9.785</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Total polyphenols variable is positive by loaded and flavonoids variable is negatively loaded against the second principal component, PC2 (Figure 3a). These variables have the highest PC2 contributions and perform the discrimination between S1 which is PC2 positively loaded, P1, P2 which are negatively loaded against PC2 and S2 which is null PC2 loaded. The total polyphenols content and antioxidant capacity have registered the highest levels in S1 sample group. In P1 and P2 sample groups, flavonoids content was more abundant than in S1 and S2 samples. Samples S1 and S2 presented high reducing potential of the extract reacting with a ferric tripyridyltriazine (Fe³⁺-TPTZ) complex (i.e. FRAP method). All these facts are valid due to high positive values of the mentioned samples PCA scores projections on variables vectors.

According with Figure 3a, P1 and P2 samples groups overlap so it appears that there are no differences between antioxidant capacities determined by ABTS and DPPH methods. The rest of the variables, FRAP method, flavonoids and total polyphenols are discriminators for these two samples groups (Figure 3b and Figure 4). However, only 9.785% of total variance is explained by the third principal component (PC3), thus this is not an accurate hypothesis (Table IV).
This is the reason that in the hierarchical cluster analysis (HCA) of samples groups, the PCA factor scores for all three principal components (PC1, PC2 and PC3) were considered as input. In this way, HCA has successfully done the clusters validation at 1.9 cut-off similarity distance value (Figure 5) and furthermore, the motivation of using all three principal components in the multivariate analysis (Figure 5).

The success of the HCA samples clustering was proven by the fact that the group samples: P1, P2, S1 and S2, are not overlapping (or mixing one with other) after 1.9 cut-off similarity distance value (Figure 5). Furthermore, in order to finalize the HCA, the clusters were emphasized by non-overlapping ellipses.

Conclusions

The phytochemicals identified in Salviae and Plantago species made them a potential source of natural antioxidants that could have a great importance in medicine and pharmacology. Knowing the bioactive compounds from plant extracts (Salviae fluidum and Plantago fluidum) and their biological activity, these can be used in the desired direction with maximum efficiency, to improve the patient quality of life.

The method provided by the 10th edition of the Romanian Pharmacopoeia was performed in order to obtain the herbal extracts. As herbal species, Salvia sp. and Plantago sp. were studied, originating from the spontaneous flora of Bihor and Arad counties, each carefully selected as to have been found in unpolluted areas. The results of the analysis were demonstrated by determining the antioxidant capacity, which may vary from one species to another, but closely connected to the polyphenols content that appears to vary depending on climatic conditions.

Multivariate analysis (PCA) revealed that the considered variables perform a clustering (HCA) of the analysed samples groups. The variables ABTS, DPPH and FRAP have the highest PC1 contributions and perform the discrimination between S1, P1, P2 clusters, located on the positive part of PC1 axis, and S2 cluster located on the negative part of the PC1 axis (Figure 3a). Furthermore, the variables total polyphenols, flavonoids and FRAP perform a discrimination between the samples species S1, S2 and P1, P2 (Figure 3a). The variables total polyphenols, ABTS and DPPH can discriminate in the same time between the samples species and the cropping location, but this is relevant only considering the third principal component, PC3 (Figure 3b and Figure 4). Hierarchical cluster analysis validated these conclusions (Figure 5) and emphasized the hypothesis that the analysed variables can be considered as markers for these two plant species extracts and their plant cropping locations.

We can affirm that both Salviae and Plantago extracts may be included in dietary supplements having an antioxidant effect, helpful in preventing different diseases.

References

7. Kulisic T., Radonic A., Katalinic V., Milos M., Use of different methods for testing antioxidative