THE ASSAY OF FELODIPINE BY SECOND DERIVATIVE SPECTROPHOTOMETRY

ALEXANDRA FILARETA NEAGU, IOANA CLEMENTINA CONSTANTINESCU*, ANGELA NEDELCU

“Carol Davila” University of Medicine and Pharmacy Bucharest, Faculty of Pharmacy, Department of Analytical Chemistry, 6 Traian Vuia Street, Bucharest, Romania

*corresponding author: constantinescu_clementina@yahoo.com

Manuscript received: July 2015

Abstract

The present paper aimed the development of a new felodipine assay method, a calcium channel antagonists, used as an antihypertensive drug. The second derivative of the felodipine absorption spectra was used at wavelengths between 239-230 nm, in methanolic solution. It was established the concentration range for Beer`s law. It was assessed that there is a linear relationship between the second derivative and the concentration of the felodipine solutions, in the range between 1.946·10^-6 and 19.46·10^-6 g/mL. The correlation coefficient and the regression equation were found to be r = 0.99975 and y = 0.00883x + 0.00487. This method proved to be sensitive, reproducible and accurate.

Introduction

Among the calcium antagonists, considered to be the only drugs which modify the calcium influx into cells by blocking, thereby causing vasodilation, felodipine: ethyl methyl ester of (RS)-4-(2,3-dichlorophenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid (Figure 1), is characterized by a certain therapeutic effectiveness being used in the treatment of various cardiovascular disorders [2].

Figure 1.
The chemical structure of felodipine

The literature includes many methods for the assay of felodipine based on high performance liquid chromatography [3-13]. There are very little references for the spectrophotometric method of felodipine assay [14-16]. The spectrophotometric methods are simpler and have lower costs compared with chromatographic methods and therefore are used to determine numerous of drugs [17-19]. Therefore, we proposed to establish a new method by derivative spectrophotometry for the determination of felodipine in bulk.

Materials and Methods

Instrument: Perkin Elmer UV-VIS spectrometer Lambda 2 (Perkin Elmer) (10 mm quartz cells); analytical balance (Mettler Toledo AT261 Delta Range); ultrasonic bath Elma 9331-1 (Barnstead, Lab-Line, USA).

Chemicals and reagents: felodipine (Labormed Pharma); spectrophotometric grade methanol (Merck KGaA, Germany). All reagents were of analytical grade.

Method

Procedure for calibration curve

A 2.435·10^-4 g/mL stock standard solution of felodipine (solution A) was obtained by dissolving an appropriate amount of drug in methanol. A 9.74·10^-5 g/mL standard solution of felodipine (solution B) was prepared by dilution of A solution. Ten standard solutions of felodipine were prepared...
individually by dilution of the B solution with methanol for spectrophotometric determination to obtain a concentration range of $1.946 \cdot 10^{-6}$ and $19.46 \cdot 10^{-6}$ g/mL. The variation in the amplitude of the second derivative was registered.

Results and Discussion

The spectrophotometric analysis was performed by recording the UV absorption spectrum, first derivative (D1) and second (D2) order derivatives of UV absorption spectrum of felodipine methanolic solutions (Figures 2, 3 and 4).

Method validation

The method validation followed the parameters: linearity, accuracy, precision (repeatability and intermediate precision), according to the International Conference on Harmonization (ICH) [20].

Linearity

The variation of amplitude of D2 of UV spectrum of felodipine versus concentration of drug was registered and the data were used in drawing the calibration curve. In the studied concentration range, a linear relationship between concentration and amplitude of D2 has been shown. The statistical parameters for calibration curve were given in the regression equation calculated from the calibration curve (Table I). The linearity of calibration curve in the studied concentration range was proved by the correlation coefficient which was found to be 0.99975.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beer’s law limits (g/mL)</td>
<td>$1.946 \cdot 10^{-6} - 19.46 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>Regression equation (y)</td>
<td>$0.00883x + 0.00487</td>
</tr>
<tr>
<td>Intercept (a)</td>
<td>0.00487</td>
</tr>
<tr>
<td>Slope (b)</td>
<td>0.00883</td>
</tr>
<tr>
<td>Correlation coefficient (r)</td>
<td>0.99975</td>
</tr>
<tr>
<td>Regression coefficient (r^2)</td>
<td>0.9995</td>
</tr>
</tbody>
</table>

Accuracy was studied taking samples of felodipine so as to obtain concentrations between 80 - 120% of the amount of interest. The procedure described for the calibration curve plotting was used for
samples preparation. For each concentration level three solutions were prepared. The D2 of UV absorption spectra was registered. The results show that in the range of the concentration from 7.2939·10^{-6} to 14.9540·10^{-6} g felodipine/mL, measurements were accurate (Table II).

<table>
<thead>
<tr>
<th>Validation parameters</th>
<th>Mean recovery</th>
<th>RSD%</th>
<th>Confidence range (95% confidence level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>100.04%</td>
<td>0.562</td>
<td>100.04 ± 0.43</td>
</tr>
<tr>
<td>Precision</td>
<td>99.48%</td>
<td>0.609</td>
<td>99.48 ± 0.46</td>
</tr>
<tr>
<td>Intermediate precision</td>
<td>99.94%</td>
<td>0.736</td>
<td>99.94 ± 0.56</td>
</tr>
</tbody>
</table>

Table II

Accuracy and precision results

Method precision was evaluated by the repeatability and the intermediate precision, according to the ICH guidance.

Repeatability was determined using three samples of known concentration. For each of these samples, the average of the amplitude of the D2 of three successive determinations and the data of the statistical processing are shown in Table II. The relative standard deviation (RSD %) was 0.609 for the concentration range of 8.2915·10^{-6} - 11.0380·10^{-6} g felodipine/mL.

The intermediate precision was studied by determinations in another day with freshly prepared solutions using the same procedure for repeatability. Three solutions of felodipine were prepared and for each of them it was recorded the D2 of absorption spectrum for three times. Felodipine concentration was calculated using the regression equation. The data were processed statistically and are shown in Table II. The relative standard deviation was found to be RSD% = 0.736.

Results of validation are summarized in Table III.

Table III

Summary of validation parameters

Method precision was evaluated by the intermediate precision, according to the ICH guidance. Repeatability was determined using three samples of known concentration. For each of these samples, the average of the amplitude of the D2 of three successive determinations and the data of the statistical processing are shown in Table II. The relative standard deviation (RSD %) was 0.609 for the concentration range of 8.2915·10^{-6} - 11.0380·10^{-6} g felodipine/mL.

The intermediate precision was studied by determinations in another day with freshly prepared solutions using the same procedure for repeatability. Three solutions of felodipine were prepared and for each of them it was recorded the D2 of absorption spectrum for three times. Felodipine concentration was calculated using the regression equation. The data were processed statistically and are shown in Table II. The relative standard deviation was found to be RSD% = 0.736.

Results of validation are summarized in Table III.

Conclusions

A new spectrophotometric method for the assay of felodipine, using second order derivative spectra, was established. The concentration range in which determinations can be performed is between 1.9468 mg/L and 19.468 mg/L. Under the set conditions, the method was precise, accurate and sensitive.

References

1. ***European Pharmacopoeia, 6th Edition, EDQM, Council of Europe, 67075, Strasbourg Cedex, France, 2008.***

