PHARMACOLOGICAL AND DISORDER ASSOCIATED CARDIOVASCULAR CHANGES IN PATIENTS WITH PSYCHOSIS. A COMPARISON BETWEEN OLANZAPINE AND RISPERIDONE

LIANA DEHELEAN 1*, MINODORA ANDOR 2#, ANA MARIA ROMOŞAN 3*, MINODORA MARINELA MANEA 4*, RADU ŞTEFAN ROMOŞAN 1, ION PAPAVĂ 1, ANA CRISTINA BREDICEAN 1, VALENTINA OANA BUDA 5, MIRELA CLEOPATRA TOMESCU 2

1Psychiatry, Neurosciences Department, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Square, Timișoara, Romania
2Medical Semiology II, Internal Medicine I Department, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Square, Timișoara, Romania
3“Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Square, Timișoara, Romania
4Psychology, Medical Education Department, “Juliu Hășețanu” University of Medicine and Pharmacy, 8. V. Babeş Street, Cluj-Napoca, Romania
5Pharmacology and Clinical Pharmacology, 2nd Department, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Square, Timișoara, Romania

*corresponding author: lianadeh@umft.ro
#These authors contributed equally to this work and thus share first authorship.

Abstract

Patients receiving antipsychotic medication present a high risk of cardiovascular complications due either to medication or to the disorder itself. This study compares the cardiovascular risk factors and echocardiographic parameters in two samples of outpatients with psychosis treated for at least 2 months with long acting injectable olanzapine or risperidone. We assessed the socio-demographic data, the cardiovascular risk factors, and the echocardiographic parameters. Subjects receiving risperidone had significantly more frequent regional myocardial contractility abnormalities ($\chi^2 = 6.896, p = 0.009$) and diastolic dysfunction of the left ventricle than those on olanzapine ($\chi^2 = 5.416, p = 0.02$), and were more frequently hypertensive. Patients with associated mood stabilizers presented more abnormalities related to the contractile function of the left ventricle than those receiving only antipsychotic treatment ($\chi^2 = 4.138, p = 0.042$). There were no differences between the two samples concerning tobacco use or the presence of the metabolic syndrome.

Rezumat

Pacienții tratați cu antipsihotice prezintă un risc crescut de complicații cardiovasculare consecutiv tratamentului sau bolii. Acest studiu a comparat factorii de risc cardiovascular și parametrii ecocardiografici a două loturi de pacienți cu psihoză, aflați de cel puțin 2 luni în tratament ambulatoriu cu preparate injectabile depôt cu olanzapină sau risperidonă. Au fost analizate datele socio-demografice, factorii de risc cardiovascular și parametrii ecocardiografici. Subiecții tratați cu risperidonă au prezentat mai frecvent tulburări de contractilitate miocardică regională ($\chi^2 = 6.896, p = 0.009$) și disfuncție diastolică a ventriculu lui stâng ($\chi^2 = 5.416, p = 0.02$), comparativ cu cei tratați cu olanzapină și au fost mai frecvent hipertensiivi. Pacienții cu medicamente stabilizatoare asociate au avut mai frecvent tulburări de contractilitate miocardică a ventriculu lui stâng față de cei tratați doar cu antipsihotice ($\chi^2 = 4.138, p = 0.042$). Nu au fost evidențiate diferențe între cele două loturi privind fumatul sau prezența sindromului metabolic.

Keywords: olanzapine, risperidone, cardiovascular risk, echocardiography

Introduction

Cardiovascular complications in patients with psychosis need special attention, largely because they may reduce life expectancy. Individuals suffering from schizophrenia have a higher prevalence of cardiovascular diseases compared with the general population and adjusted with age [5]. This finding is a consequence of several factors, some induced by the disorder itself, others by medication. The negative symptoms of schizophrenia may encourage a sedentary lifestyle, while positive symptoms such as delusions and hallucinations may induce anxiety and depression, which increase the risk of developing cardiovascular complications. Retrospective [13] and prospective [23] studies identified metabolic dysfunctions in patients with psychosis, before, as well as after the introduction of antipsychotics in the treatment of these patients. This implies that both psychosis and psychotropic medication are equally involved in the development of the metabolic disturbances.
Cardiovascular risk factors are classified into three categories [9]: major independent factors (smoking, hypertension, elevated serum total and LDL cholesterol, low serum HDL cholesterol, diabetes mellitus, and advancing age), predisposing factors (obesity, abdominal obesity, physical inactivity, family history of premature coronary heart disease, psychosocial factors, ethnic characteristics) and conditional factors (elevated serum triglycerides, small LDL particles, elevated serum homocysteine, elevated serum lipoprotein a, pro-thrombotic factors inflammatory markers). By combining these parameters, algorithms were developed to predict coronary heart disease risk [28]. The concept of the metabolic syndrome (MS) was created using some of the major (hypertension, low HDL, hyperglycaemia), predisposing (abdominal obesity) and conditional (elevated serum triglycerides) cardiovascular risk factors [9].

Antipsychotic medication may influence in various degrees the carbohydrate and the lipid metabolism through central and/or peripheral mechanisms depending on the specific pharmacodynamic profile. At the level of hypothalamus, antipsychotics have an orexigenic effect by blocking histaminic 1 (H1) [14] and serotoninergic 2C (5HT2C) receptors. Animal studies showed that the blockade of H1 receptors activates AMP-kinase in mice [11]. In addition, agonism at 5HT2C receptors of the anorexigenic pro-opiomelanocortin neurons in hypothalamus decrease food intake in animals [15]. At the peripheral level, antipsychotics which block muscarinic 3 (M3) receptors at the level of pancreatic β cells, inhibit insulin secretion [24]. A combined affinity of an antipsychotic for 5HT2C, H1, and muscarinic receptors will increase the risk of developing diabetes mellitus [17].

Apart from the dual dopamine D2 and serotonin 5HT2A receptor blockade which ensures an antipsychotic action associated with a low profile of extrapyramidal and endocrine side effects, olanzapine and risperidone differ in respect to the complexity of their mechanisms of action. Olanzapine, having affinity for more receptors than risperidone is considered a multifunctional drug, therefore is an alternative to drug combinations [12]. As a fact, epidemiologic data show that clinicians prefer antipsychotics acting on multiple receptors [21]. On the other hand, a more complex mechanism of action may result in more various side-effects. Through combined H1, 5HT2C and M3 blockade, olanzapine has the most important impact on carbo-hydrate metabolism. Patients treated with olanzapine show increases in blood glucose levels with 10 mg/dL after one year of treatment [19]. By contrast, risperidone, with a simpler pharmacologic profile [26], interacts with H1 and α-adrenergic receptors and insignificantly with cholinergic receptors [18].

Concerning the lipid metabolism, the treatment with antipsychotics induces hypertriglyceridaemia, low HDL cholesterol and high LDL cholesterol serum levels. Treatment with olanzapine is associated with hyperlipidaemia, while risperidone has a lesser impact on plasma lipids. Animal studies show that chronic administration of risperidone results in fatty tissue hypertrophy [5].

The direct effects of antipsychotics on the cardiovascular system include QTc prolongation, tachycardia, orthostatic hypotension and sudden death. Hypertension was not shown to have a higher prevalence in patients with schizophrenia compared to the general population [3]. Among antipsychotics clozapine was linked with the risk of developing myocarditis [10]. To our knowledge, echocardiographic examinations are not routinely performed in patients treated with antipsychotics, except specific occasions focusing mainly on clozapine [20]. The risk of developing cardiovascular diseases seems to be more important in patients that are either adherent to oral antipsychotics, or are treated with long acting injectable (LAI) formulations. In comparison to oral antipsychotics, LAI formulations produce lower and less fluctuating serum concentrations [16]. They also ensure a good adherence to treatment, knowing the fact that only 41% of patients with schizophrenia comply with the antipsychotic treatment [8].

The aim of this study was to assess the cardiovascular risk factors and changes in cardiac function through transthoracic echocardiography in patients treated with either olanzapine or risperidone.

Materials and Methods

Study design

It was conducted a two centres (Timişoara and Cluj-Napoca, Romania) cross-sectional study on outpatients diagnosed with schizophrenia and schizoaffective disorder according to ICD-10 criteria. Patients treated with oral antipsychotics were excluded from the study in order to assure a convincing treatment adherence. Patients on LAI treatment are required to be previously stabilized with the same medication in an oral form. This implies that the measurements were performed upon study entry because of treatment adherence issues with oral formulations. In addition, subjects with already diagnosed hypertension, glucose and lipid metabolism abnormalities and electrocardiographic or echocardiographic changes were excluded from the study. The investigated molecules were selected according to their different receptor profiles resulting in a more (olanzapine) or less (risperidone) complex mechanism of action. Some patients received adjunctive mood stabilizers (sodium valproate, carbamazepine, or lamotrigine). The subjects receiving LAI olanzapine or risperidone for less than 2 months were not included in the study.
The patients were evaluated by a cardiologist searching for clinical, electrocardiographic and echocardiographic (ejection fraction, regional contractile abnormalities) data. The following parameters were assessed: cardiovascular risk factors (age, gender, smoking habits and presence of the MS), thioridazine echocardiographic parameters, medication and BPRS-E scores (Brief Psychiatric Rating Scale – Expanded version 4.0). The expanded version of BPRS, was used to measure the severity of the psychiatric symptoms in patients with psychotic disorders [27]. The metabolic syndrome was diagnosed according to the consensus statement from the International Diabetes Federation published in 2006 [1]. Fasting glycaemia was measured using the LipidPro ILM meter.

In order to discriminate between the pharmacologic and the disorder induced effect, we assessed the following time intervals: duration of psychosis (DP) defined as months from the onset of the psychotic disorder to the present assessment); time spent (months) from the onset of the psychotic disorder induced effect, we assessed the severity of the psychiatric symptoms in patients with psychotic disorders [27]. The metabolic syndrome was diagnosed according to the consensus statement from the International Diabetes Federation published in 2006 [1]. Fasting glycaemia was measured using the LipidPro ILM meter.

To determine the presence of the MS, transthoracic echocardiographic imaging of the heart was performed for each patient by the prescribing psychiatrist. In 2006 [1], Fasting glycaemia was measured using the LipidPro ILM meter. The metabolic syndrome was defined using the LipidPro ILM-0001A lipid meter.

The protocol of the study and the informed consent were approved by the Scientific Research Ethic Committee of “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Romania. This project was conducted in accord with the Helsinki Declaration. Each subject enrolled in the study, signed the informed consent. The authors have undertaken this study in the course of their employment, with no funding from any other source.

Statistical analysis

Data were analysed using IBM SPSS Statistics (version 20). The Shapiro-Wilk test revealed a non-Gaussian data distribution. Therefore, to analyse group differences, a non-parametrical test was used (Mann-Whitney U). \(\chi^2 \) (chi-square) test was used for categorical (nominal) variables. Associations between scores were analysed using Spearman’s correlation coefficients. The level of significance was set at 0.05 and all results were two-tailed.

Results and Discussion

We assessed 64 outpatients diagnosed with schizophrenia and schizoaffective disorder, currently in remission. All subjects were enrolled between 2015 and 2016. The socio-demographic and clinical characteristics of the sample are presented in Table I.

Table I
Socio-demographic and clinical characteristics of the sample

<table>
<thead>
<tr>
<th>Sample characteristics</th>
<th>Entire sample</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Mean age (years) at disorder onset</td>
<td>29.54 ± 10.45</td>
<td>28.45 ± 10.66</td>
<td>31.03 ± 10.15</td>
</tr>
<tr>
<td>Mean age (years) at present assessment</td>
<td>41.25 ± 11.14</td>
<td>42.02 ± 12.05</td>
<td>40.18 ± 9.88</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>51</td>
<td>79.7</td>
<td>28</td>
</tr>
<tr>
<td>Schizoaffective disorder</td>
<td>13</td>
<td>20.3</td>
<td>9</td>
</tr>
<tr>
<td>Mean BPRS-E total score</td>
<td>38.76 ± 11.57</td>
<td>40.72 ± 12.34</td>
<td>36.07 ± 10.02</td>
</tr>
<tr>
<td>Associated mood stabilizer</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>65.6</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>34.4</td>
<td>15</td>
</tr>
</tbody>
</table>

Patients were divided in two samples, one receiving olanzapine LAI and the other one, risperidone LAI. There were no differences between the two samples in respect to: age at study entry, age at disorder onset, gender and adjunctive associated mood stabilizers.

The dosage of each long acting injection and the choice of the adjunctive mood stabilizer were established for each patient by the prescribing psychiatrist. In Table II are presented the doses and duration of the LAI treatment.

Table II
Sample characteristics according to LAI antipsychotic dosages

<table>
<thead>
<tr>
<th>LAI Antipsychotic</th>
<th>Dosage (mg/months)</th>
<th>Duration of LAI treatment (months)</th>
<th>Number of patients (n)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olanzapine</td>
<td>1 injection of 210 mg/month</td>
<td>21 ± 12.72</td>
<td>2</td>
<td>3.1</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>1 injection of 300 mg/month</td>
<td>17.83 ± 14.23</td>
<td>6</td>
<td>9.4</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>1 injection of 405 mg/month</td>
<td>13.9 ± 11.87</td>
<td>6</td>
<td>9.4</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>2 injections of 300 mg/month</td>
<td>8.94 ± 6.67</td>
<td>18</td>
<td>28.1</td>
</tr>
<tr>
<td>Risperidone</td>
<td>2 injections of 37.5 mg/month</td>
<td>19.85 ± 16.58</td>
<td>14</td>
<td>21.9</td>
</tr>
<tr>
<td>Risperidone</td>
<td>2 injections of 50 mg/month</td>
<td>30.0 ± 21.5</td>
<td>18</td>
<td>28.1</td>
</tr>
</tbody>
</table>
Cardiovascular risk factors are: tobacco use, metabolic syndrome and hypertension.

Tobacco use
From the entire group of 64 subjects, 26 (40.6%) patients were smokers among which 22 (84.6%) men and 4 (15.4%) women. Males were significantly more frequent smokers than females ($\chi^2 = 12.89, p < 0.0001$) and smoked more cigarettes per day ($U = 272, Z = -3.487, p < 0.0001$). No differences were found between patients on olanzapine and risperidone regarding the number of cigarettes smoked per day. The link between smoking, schizophrenia and antipsychotic treatment is difficult to explain. Nicotine might enhance cognition [6] and thus be used as a “treatment” for the disorder induced cognitive dysfunctions or by drug induced sedation. On the other hand, smoking is an enzymatic inducer lowering the serum concentrations of olanzapine [2, 7].

Hypertension
Patients receiving risperidone LAI had significantly higher values for either systolic ($U = 364.5, Z = -1.993, p = 0.046$) and diastolic blood pressure ($U = 357.5, Z = -2.108, p = 0.035$). The patients presenting hypertension had a longer duration of pre LAI treatment than those without hypertension ($U = 170, Z = -2.924, p = 0.003$), with no differences in respect to the total duration of psychosis (DP) and duration of LAI treatment. This may suggest that a period of uncertain adherence to treatment may result in clinical stress which is reflected in higher blood pressure values. Given the fact that these patients were not diagnosed before the introduction of LAI treatment with hypertension, this result is relative. When looking to the BPRS-E results, the total score positively correlates with the duration of pre LAI treatment period ($r = 0.304, p = 0.015$).

The metabolic syndrome (MS)
The criteria for the MS diagnostic were fulfilled by 38 (59.4%) patients, among them, 17 (44.7%) on olanzapine and 21 (55.3%) on risperidone. There were no differences between patients treated with olanzapine and risperidone regarding the presence of the MS. In addition, the occurrence of the MS in the whole group of patients was not influenced by gender, age at study entry, tobacco use, associated mood stabilizers, BPRS-E scores, or dosage. Literature data also suggests that there is no clear relationship between medication induced weight gain and the dose of antipsychotics [22, 25]. However, patients presenting the MS had the disorder onset at a significantly earlier age ($U = 394, Z = -1.986, p = 0.047$).

We found that patients presenting the criteria of MS had a longer duration of psychosis ($U = 329.5, Z = -2.252, p = 0.024$), and a longer duration of LAI treatment ($U = 197, Z = -4.075, p < 0.0001$), with no significant differences regarding the pre-LAI treatment period. This means that the MS may be a consequence of either the disorder itself, or the antipsychotic treatment. In this respect, olanzapine and risperidone share the same risk of inducing MS.

Echocardiographic findings
The following echocardiographic modifications were identified in our sample: regional contractility abnormalities, valve abnormalities, and diastolic dysfunction as illustrated in Table III. We found that the echocardiographic findings were not influenced by age at disorder onset, gender, tobacco use, metabolic syndrome or hypertension.

The subjects presenting echocardiographic modifications were significantly older than those without echocardiographic findings (regional contractility abnormalities $U = 254, Z = -2.552, p = 0.011$; valve abnormalities $U = 271.5, Z = -2.801, p = 0.005$; diastolic dysfunction $U = 203, Z = -3.463, p = 0.001$). In patients presenting diastolic dysfunction, both the total duration of the psychosis ($U = 223.5, Z = -3.141, p = 0.002$) and the pre-LAI period ($U = 241, Z = -2.883, p = 0.004$) were longer. Conversely, the LAI treatment period was significantly longer in patients with regional contractility abnormalities ($U = 273, Z = -2.279, p = 0.023$). In this respect, it is possible that the regional contractility abnormalities may be influenced by medication (antipsychotics, mood stabilizers). Treatment with risperidone LAI was associated with significantly more frequent regional contractility abnormalities ($\chi^2 = 6.896, p = 0.009$) and diastolic dysfunction ($\chi^2 = 5.416, p = 0.02$) than the treatment with olanzapine LAI. No differences were found between the two samples regarding valve abnormalities. Patients receiving mood stabilizers presented more frequently regional contractility abnormalities than those without adjunctive treatment ($\chi^2 = 4.138, p = 0.042$). Knowing the fact that the total duration of the psychosis ($U = 360, Z = -2.038, p = 0.042$) and the duration on LAI treatment ($U = 277.5, Z = -3.155, p = 0.002$) were shorter in patients receiving olanzapine than in those on risperidone with no differences regarding the pre-LAI treatment period, the echocardiographic findings in patients treated with risperidone may be the consequence of a longer exposure to psychotropic treatment. To our best knowledge, at present, there are no other studies regarding echocardiographic changes in patients taking long acting antipsychotics. There are few studies conducted on patients taking clozapine in its oral form.

Because the clinical cardiologic examination and electrocardiographic recordings didn’t reveal any significant abnormalities, these data were not included in Table III.
Conclusions

In the assessed group of patients, treatment with risperidone LAI was associated with more echocardiographic findings and hypertension than the treatment with olanzapine LAI. The metabolic syndrome appears to be induced by both the disorder and the antipsychotic treatment, regardless of the molecule involved. Hypertension may be a consequence of disorder induced stress in the absence of a continuous antipsychotic treatment. The strengths of the present study are based on precise constant antipsychotic doses and confident adherence to treatment ensured by the LAI formulation. As study limitations, we did not assess risk factors such as physical inactivity, passive smoking, unhealthy diet and the family history of cardiovascular diseases.

References

